Skip to main content

Modeling Structural and Functional Adaptation of Tumor Vessel Networks During Antiangiogenic Therapy

  • Chapter
  • First Online:
  • 914 Accesses

Abstract

In many physiological processes, endothelial cells respond to blood forces, re-organizing locally through a process of adaptation to alter blood flow. Some segments dilate, while others are pruned, and eventually, a stable configuration is reached. In contrast, tumor blood vessels are chronically immature and inefficient, unable to achieve optimum perfusion throughout the network. It is thought that the angiogenic growth factor vascular endothelial growth factor (VEGF) contributes to this inefficiency, and indeed, many anti-VEGF therapies can cause maturation or stabilization of tumor blood vessels through a process resembling adaptive remodeling. Unfortunately very little is known about how adaptive remodeling affects the distribution of blood flow and the transport of nutrients and drugs into the tumor. In general, remodeling depends on blood shear forces, transvascular pressure as well as growth factors such as VEGF. To provide an analytical framework for understanding this process, we have developed a mathematical model, supported by multiparameter imaging methodology, that incorporates the necessary elements for predicting the transport of nutrients and drugs throughout tumor vessels and tissue, as well as the adaptive remodeling of the blood vessel network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Kilani A, Lorthois S, Nguyen TH, Le Noble F, Cornelissen A, Unbekandt M, Boryskina O, Leroy L and Fleury V (2008). During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors. Phys Rev E Stat Nonlin Soft Matter Phys 77(5 Pt 1): 051912.

    PubMed  Google Scholar 

  • Alemani D (2007). A lattice boltzmann numerical approach for modeling reaction-diffusion processes in chemically and physically heterogeneous environments. Geneva, UNIVERSITÉ DE GENÈVE. PhD.

    Google Scholar 

  • Ansiaux R, Baudelet C, Jordan BF, Crokart N, Martinive P, DeWever J, Gregoire V, Feron O and Gallez B (2006). Mechanism of reoxygenation after antiangiogenic therapy using su5416 and its importance for guiding combined antitumor therapy. Cancer Res 66(19): 9698–704.

    CAS  PubMed  Google Scholar 

  • Baffert F, Le T, Sennino B, Thurston G, Kuo CJ, Hu-Lowe D and McDonald DM (2006). Cellular changes in normal blood capillaries undergoing regression after inhibition of vegf signaling. Am J Physiol Heart Circ Physiol 290(2): H547–59.

    CAS  PubMed  Google Scholar 

  • Baish JW, Netti PA and Jain RK (1997). Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvascular Research 53: 128–141.

    CAS  PubMed  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY and Jain RK (2007). Azd2171, a pan-vegf receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1): 83–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter LT and Jain RK (1988). Vascular permeability and interstitial diffusion in superfused tissues: A two-dimensional model. Microvascular Research 36(1): 108–15.

    CAS  PubMed  Google Scholar 

  • Baxter LT and Jain RK (1991a). Vascular and interstitial transport in tumors. Tumor blood supply and metabolic microenvironment: Characterization and therapeutic implications. P. Vaupel and R. K. Jain. Stuttgart, Fischer Publications.

    Google Scholar 

  • Baxter LT, Yuan F and Jain RK (1992). Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: Comparison with experimental data. Cancer Research 52(20): 5838–44.

    CAS  PubMed  Google Scholar 

  • Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D and Jain RK (2001). In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine 7(7): 864–8.

    CAS  PubMed  Google Scholar 

  • Brown MD and Hudlicka O (2003). Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: Involvement of vegf and metalloproteinases. Angiogenesis 6(1): 1–14.

    CAS  PubMed  Google Scholar 

  • Chaplain M and Anderson A (2004). Mathematical modeling of tumour-induced angiogenesis: Network growth and structure. Cancer Treat Res 117: 51–75.

    PubMed  Google Scholar 

  • Chaplain MA and Anderson AR (1996). Mathematical modeling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis 16(4–5): 222–34.

    CAS  PubMed  Google Scholar 

  • Chien S, Lin SJ, Weinbaum S, Lee MM and Jan KM (1988). The role of arterial endothelial cell mitosis in macromolecular permeability. Advances in Experimental Medicine & Biology 242: 59–73.

    CAS  Google Scholar 

  • Dardis O and McCloskey J (1998). Lattice boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Physical Review E 57(4): 4834–4837.

    CAS  Google Scholar 

  • Dupin M, Halliday I, Care C and Munn L (2008a). Lattice boltzmann modeling of blood cell dynamics. Int J Comp Fluid Dynamics 22(7): 481–492.

    Google Scholar 

  • Dupin MM, Halliday I, Care CM, Alboul L and Munn LL (2007). Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E Stat Nonlin Soft Matter Phys 75(6 Pt 2): 066707.

    PubMed  PubMed Central  Google Scholar 

  • Dupin MM, Halliday I, Care CM and Munn LL (2008). Efficiency-oriented, hybrid approach for modeling deformable particles in three dimensions. Progress in Computational Fluid Dynamics 8: 109–120.

    Google Scholar 

  • Eaton WA, Henry ER, Hofrichter J and Mozzarelli A (1999). Is cooperative oxygen binding by hemoglobin really understood? Nature Structural Biology 6: 351–358.

    CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP and Novotny W (2004). Discovery and development of bevacizumab, an anti-vegf antibody for treating cancer. Nat Rev Drug Discov 3(5): 391–400.

    CAS  PubMed  Google Scholar 

  • Ferrara N and Kerbel RS (2005). Angiogenesis as a therapeutic target. Nature 438(7070): 967–74.

    CAS  PubMed  Google Scholar 

  • Fischer C, Mazzone M, Jonckx B and Carmeliet P (2008). Flt1 and its ligands vegfb and plgf: Drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12): 942–56.

    CAS  PubMed  Google Scholar 

  • Folkman J (1971). Tumor angiogenesis: Therapeutic implications. N Engl J Med 285(21): 1182–6.

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Schornack PA, Secomb TW and Raghunand N (1999). Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1(3): 197–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruionu G, Hoying JB, Gruionu LG, Laughlin MH and Secomb TW (2005). Structural adaptation increases predicted perfusion capacity after vessel obstruction in arteriolar arcade network of pig skeletal muscle. Am J Physiol Heart Circ Physiol 288(6): H2778–84.

    CAS  PubMed  Google Scholar 

  • Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Grone HJ, Hammerling GJ, Arnold B and Ganss R (2008). Vascular normalization in rgs5-deficient tumours promotes immune destruction. Nature 453(7193): 410–4.

    CAS  PubMed  Google Scholar 

  • Hansen-Smith FM, Hudlicka O and Egginton S (1996). In vivo angiogenesis in adult rat skeletal muscle: Early changes in capillary network architecture and ultrastructure. Cell & Tissue Research 286(1): 123–36.

    CAS  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK and McDonald DM (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4): 1363–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE and Abdollahi A (2005). Trimodal cancer treatment: Beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65(9): 3643–55.

    CAS  PubMed  Google Scholar 

  • Hudlicka O and Brown MD (2009). Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: Role of shear stress, nitric oxide and vascular endothelial growth factor. J Vasc Res 46(5): 504–12.

    CAS  PubMed  Google Scholar 

  • Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K and Kamiya A (1997). Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res 72(1): 29–35.

    CAS  PubMed  Google Scholar 

  • Jain RK (2001). Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Medicine 7(9): 987–989.

    CAS  PubMed  Google Scholar 

  • Jain RK (2005). Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307(5706): 58–62.

    CAS  PubMed  Google Scholar 

  • Jain RK (2008). Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4): 309–16.

    CAS  PubMed  Google Scholar 

  • Jain RK, Tong RT and Munn LL (2007). Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res 67(6): 2729–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PF and Sleeman BD (2006). Angiogenesis - understanding the mathematical challenge. Angiogenesis 9(3): 127–38.

    PubMed  Google Scholar 

  • Kamoun WS, Chae SS, Lacorre DA, Tyrrell JA, Mitre M, Gillissen MA, Fukumura D, Jain RK and Munn LL (2010). Simultaneous measurement of rbc velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods. 7:655–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, Batchelor TT, di Tomaso E, Duda DG, Munn LL, Fukumura D, Sorensen AG and Jain RK (2009). Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 27:2542–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Choi M, Lee J, Koh GY, Kwon K and Choi C (2009). Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics. PLoS ONE 4(1): e4275.

    PubMed  PubMed Central  Google Scholar 

  • Keller KH (1971). Effect of fluid shear on mass transport in flowing blood. Federation Proceedings 30(5): 1591–1599.

    CAS  PubMed  Google Scholar 

  • Kerbel RS (2009). Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast 18 Suppl 3: S41–7.

    PubMed  Google Scholar 

  • Ko AH, Dito E, Schillinger B, Venook AP, Xu Z, Bergsland EK, Wong D, Scott J, Hwang J and Tempero MA (2008). A phase ii study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: Is an anti-vegf strategy still applicable? Invest New Drugs 26(5): 463–71.

    CAS  PubMed  Google Scholar 

  • Lagerlund TD and Low PA (1993). Mathematical modeling of time-dependent oxygen transport in rat peripheral nerve. Comput Biol Med 23(1): 29–47.

    CAS  PubMed  Google Scholar 

  • Lee DS, Rieger H and Bartha K (2006). Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96(5): 058104.

    PubMed  Google Scholar 

  • Macklin P, McDougall S, Anderson AR, Chaplain MA, Cristini V and Lowengrub J (2009). Multiscale modeling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5): 765–98.

    PubMed  Google Scholar 

  • Migliorini C, Qian Y, Chen H, Brown E, Jain R and Munn L (2002). Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys J. 83: 1834–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munn LL (2003). Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discovery Today 8: 396–403.

    PubMed  Google Scholar 

  • Munn LL and Dupin MM (2008). Blood cell interactions and segregation in flow. Ann Biomed Eng 36(4): 534–44.

    PubMed  PubMed Central  Google Scholar 

  • Nakahara T, Norberg SM, Shalinsky DR, Hu-Lowe DD and McDonald DM (2006). Effect of inhibition of vascular endothelial growth factor signaling on distribution of extravasated antibodies in tumors. Cancer Res 66(3): 1434–45.

    CAS  PubMed  Google Scholar 

  • Netti PA, Roberge S, Boucher Y, Baxter LT and Jain RK (1996). Effect of transvascular fluid exchange on arterio-venous pressure relationship: Implication for temporal and spatial heterogeneities in tumor blood flow. Microvascular Research 52: 27–46.

    CAS  PubMed  Google Scholar 

  • Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR, Hopfner M, Dewhirst MW and Secomb TW (2009). Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 5(5): e1000394.

    PubMed  PubMed Central  Google Scholar 

  • Pries AR, Reglin B and Secomb TW (2005). Remodeling of blood vessels: Responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46(4): 725–31.

    CAS  PubMed  Google Scholar 

  • Pries AR and Secomb TW (2008). Modeling structural adaptation of microcirculation. Microcirculation 15(8): 753–64.

    PubMed  PubMed Central  Google Scholar 

  • Pries AR and Secomb TW (2009). Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc Res 81(2): 328–35.

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW and Gaehtgens P (1995). Design principles of vascular beds. Circ Res 77(5): 1017–23.

    CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW and Gaehtgens P (1998). Structural adaptation and stability of microvascular networks: Theory and simulations. Am J Physiol 275(2 Pt 2): H349–60.

    CAS  PubMed  Google Scholar 

  • Reglin B, Secomb TW and Pries AR (2009). Structural adaptation of microvessel diameters in response to metabolic stimuli: Where are the oxygen sensors? Am J Physiol Heart Circ Physiol 297(6): H2206–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudge JS, Holash J, Hylton D, Russell M, Jiang S, Leidich R, Papadopoulos N, Pyles EA, Torri A, Wiegand SJ, Thurston G, Stahl N and Yancopoulos GD (2007). Inaugural article: Vegf trap complex formation measures production rates of vegf, providing a biomarker for predicting efficacious angiogenic blockade. Proc Natl Acad Sci U S A 104(47): 18363–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schugart RC, Friedman A, Zhao R and Sen CK (2008). Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. Proc Natl Acad Sci U S A 105(7): 2628–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK, Berse B, Jackman RW, Dvorak AM and Dvorak HF (1993). Vascular permeability factor (vpf, vegf) in tumor biology. [review]. Cancer & Metastasis Reviews 12(3–4): 303–24.

    CAS  Google Scholar 

  • Staub NC (1963). Alveolar-arterial oxygen tension gradient due to diffusion J. Appl. Physiol. 18: 673–680.

    CAS  PubMed  Google Scholar 

  • Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456(7223): 814–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Succi S (2001). The lattice boltzmann equation for fluid dynamics and beyond. Oxford, Oxford University Press.

    Google Scholar 

  • Sukop MC and Thorne DT (2007). Lattice boltzmann modeling: An introduction for geoscientists and engineers New York, Springer.

    Google Scholar 

  • Sun C, Jain RK and Munn LL (2007). Non-uniform plasma leakage affects local hematocrit and blood flow: Implications for inflammation and tumor perfusion. Ann Biomed Eng 35(12): 2121–9.

    PubMed  PubMed Central  Google Scholar 

  • Sun C, Migliorini C and Munn LL (2003). Red blood cells initiate leukocyte rolling in postcapillary expansions: A lattice-boltzmann analysis. Biophysical Journal 85: 208–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CH and Munn LL (2005). Particulate nature of blood determines macroscopic rheology: A 2-d lattice boltzmann analysis. Biophysical Journal 88(3): 1635–1645.

    CAS  PubMed  Google Scholar 

  • Sun CH and Munn LL (2006). Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: A lattice-boltzmann analysis. Physica A 362: 191–196.

    Google Scholar 

  • Sun CH and Munn LL (2008). Lattice boltzmann simulation of blood flow in digitized vessel networks. Computers & Mathematics with Applications 55: 1594–1600.

    Google Scholar 

  • Sun S, Wheeler MF, Obeyesekere M and Patrick CW, Jr. (2005). A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67(2): 313–37.

    CAS  PubMed  Google Scholar 

  • Szczerba D and Szekely G (2005). Computational model of flow-tissue interactions in intussusceptive angiogenesis. J Theor Biol 234(1): 87–97.

    PubMed  Google Scholar 

  • Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ and Jain RK (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11): 3731–6.

    CAS  PubMed  Google Scholar 

  • Tyrrell JA, Kamoun W and Munn LL (2010). A mathematical framework for predicting oxygen deliver and vessel remodeling. Biomedical Engineering Society Annual Meeting, Austin, TX.

    Google Scholar 

  • Tyrrell JA, Mahadevan V, Tong RT, Brown EB, Jain RK and Roysam B (2005). A 2-d/3-d model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy. Microvasc Res 70(3): 165–78.

    PubMed  Google Scholar 

  • Tyrrell JA, Tomaso Ed, Fuja D, Tong RT, Kozak KR, Jain RK and Roysam B (2007). Robust 3-d modeling of vasculature imagery using superellipsoids. IEEE Trans Med Imaging 26: 223–37.1026.

    Google Scholar 

  • Vosseler S, Mirancea N, Bohlen P, Mueller MM and Fusenig NE (2005). Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants. Cancer Res 65(4): 1294–305.

    CAS  PubMed  Google Scholar 

  • Waite L and Fine J (2007). Applied biofluid mechanics. New York, McGraw-Hill.

    Google Scholar 

  • Walsh SDC, Burwinklea H and Saar MO (2008). A new partial-bounceback lattice-boltzmann method for fluid flow through heterogeneous media Computers and Geosciences. 35(6):1186–1193.

    Google Scholar 

  • Welter M, Bartha K and Rieger H (2009). Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J Theor Biol 259(3): 405–22.

    CAS  PubMed  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY and Jain RK (2004). Direct evidence that the vegf-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2): 145–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler F, Kozin SV, Tong R, Chae S, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL and Jain RK (2004). Kinetics of vascular normalization by vegfr2 blockade governs brain tumor response to radiation: Role of oxygenation, angiopoietin-1 and matrix metalloproteinases. Cancer Cell 6: 553–563.

    CAS  PubMed  Google Scholar 

  • Wu J, Long Q, Xu S and Padhani AR (2009). Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3d angiogenic microvasculature. J Biomech 42(6): 712–21.

    PubMed  Google Scholar 

  • Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF and Jain RK (1994). Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Research 54(17): 4564–4568.

    CAS  PubMed  Google Scholar 

  • Zakrzewicz A, Secomb TW and Pries AR (2002). Angioadaptation: Keeping the vascular system in shape. News Physiol Sci 17: 197–201.

    PubMed  Google Scholar 

  • Zou Q and He X (1997). On pressure and velocity boundary conditions for the lattice boltzmann bgk model. Phys. Fluids 9(6): 1493–1858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance L. Munn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Munn, L.L., Kamoun, W., Dupin, M., Tyrrell, J.A. (2012). Modeling Structural and Functional Adaptation of Tumor Vessel Networks During Antiangiogenic Therapy. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_9

Download citation

Publish with us

Policies and ethics