Skip to main content

Cell-Based Models of Tumor Angiogenesis

  • Chapter
  • First Online:
Book cover Modeling Tumor Vasculature

Abstract

Cells are a natural unit of abstraction for tissue morphogenesis. Cell-based theoretical models provide a platform for determining key elements of cell behavior responsible for multicellular and tissue-level phenomena, and for integrating molecular and tissue/organ scales. This chapter reviews a limited selection of recent developments in cell-based modeling approaches to angiogenesis. We offer an introduction to building a cell-based model with an emphasis on model validation, and illustrate this model building process in tumor angiogenesis using the cellular Potts model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recently, it is also called Glazier-Graner-Hogeweg model, or GGH (Glazier et al. 2007; Swat et al. 2009). A CPM open source modeling environment named CompuCell3D is available online at http://www.compucell3d.org (Swat et al. 2009).

References

  • Adams RH and Alitalo K(2007) Molecular regulation of angiogenesis and lymphangiogenesis Nat Rev Mol Cell Biol 8: 464–478.

    CAS  PubMed  Google Scholar 

  • Ambrosi D, Gamba A and Serini G(2004) Cell directional persistence and chemotaxis in vascular morphogenesis Bull Math Biol 66: 1851–1873.

    CAS  PubMed  Google Scholar 

  • Anderson AR and Chaplain MA(1998) Continuous and discrete mathematical models of tumor-induced angiogenesis Bull Math Biol 60: 857–899.

    CAS  PubMed  Google Scholar 

  • Anderson AR, Weaver AM, Cummings PT, et al. (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment Cell 127: 905–915.

    CAS  PubMed  Google Scholar 

  • Anderson AR, Chaplain MA and Rejniak KA(2007). Single-Cell Based Models in Biology and Medicine, Birkhauser.

    Google Scholar 

  • Anderson AR and Quaranta V(2008) Integrative mathematical oncology Nat Rev Cancer 8: 227–234.

    CAS  PubMed  Google Scholar 

  • Bauer AL, Jackson TL and Jiang Y(2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis Biophys J 92: 3105–3121.

    Google Scholar 

  • Bauer AL, Jackson TL and Jiang Y(2009) Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis PLoS Comput Biol 5: e1000445.

    PubMed  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y, et al. (2010) Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model J Theor Biol 264: 838–846.

    CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RA and Cheresh DA(1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis Science 264: 569–571.

    Google Scholar 

  • Byrne HM, Alarcon T, Owen MR, et al. (2006) Modeling aspects of cancer dynamics: A review Phi. Trans. R. Soc. A 364: 1563–1578.

    CAS  Google Scholar 

  • Carmeliet P(2000) Mechanisms of angiogenesis and arteriogenesis Nat Med 6: 389–395.

    CAS  PubMed  Google Scholar 

  • Carmeliet P and Jain RK(2000) Angiogenesis in cancer and other diseases Nature 407: 249–257.

    CAS  PubMed  Google Scholar 

  • Carmeliet P(2003) Angiogenesis in health and disease Nat Med 9: 653–660.

    CAS  PubMed  Google Scholar 

  • de Pillis LG, Radunskaya AE and Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth Cancer Res 65: 7950–7958.

    PubMed  Google Scholar 

  • Drake CJ, LaRue A, Ferrara N, et al. (2002) VEGF regulates cell behavior during vasculogenesis Dev Biol 224: 178–188.

    Google Scholar 

  • Drasdo D(2003). On selected individual-based approaches to the dynamics of multicellular systems.In: Alt W. Multiscale Modeling.Basel, Birkhauser.

    Google Scholar 

  • Drasdo D and Hohme S(2003) Individual-based approaches to birth and death in avascular tumors Math. Comput. Modeling 37: 1163.

    Google Scholar 

  • Folkman J and D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153–1155.

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gawlinski ET, Alarcon T, et al. (2005) A multiple scale model for tumor growth Multiscale Modeling Simulation 3: 440–475.

    Google Scholar 

  • Gatenby RA(2009) A change of strategy in the war on cancer Nature 459: 508–509.

    Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia J Cell Biol 161: 1163–1177.

    CAS  PubMed  Google Scholar 

  • Gerhardt H(2008) VEGF and endothelial guidance in angiogenic sprouting Organogenesis 4: 241–246.

    Google Scholar 

  • Glazier JA and Graner F(1993) Simulation of the differential adhesion driven rearrangement of biological cells Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 47: 2128–2154.

    CAS  PubMed  Google Scholar 

  • Glazier JA, Balter A and Poplawski NJ(2007). Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model.In: Anderson ARA, Chaplain MAJ and Rejniak KA. Single-Cell Based Models in Biology and Medicine, Birkhauser: 346.

    Google Scholar 

  • Graner F and Glazier JA(1992) Simulation of biological cell sorting using a two-dimensional extended Potts model Phys Rev Lett 69: 2013–2016.

    CAS  PubMed  Google Scholar 

  • Lampugnani GM, Zanetti A, Corada M, et al. (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148 J Cell Biol 161: 793–804.

    CAS  PubMed Central  Google Scholar 

  • Grievank A(2000). Evaluating derivatives, Principles and techniques of algorithmic differentiation., SIAM publisher.

    Google Scholar 

  • Hatzikirou H, Deutsch A, Schaller C, et al. (2005) Mathematical modeling of glioblastoma tumour development: A review Math. Models Methods Appl. Sci. 15: 1779–1794.

    Google Scholar 

  • Helton JC, Johnson JD, Salaberry CJ, et al. (2006) Survey of sampling based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety Reliability Engineering and System Safety 91: 1175–1209.

    Google Scholar 

  • Hicklin DJ and Ellis LM(2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis J Clin Oncol 23: 1011–1027.

    CAS  PubMed  Google Scholar 

  • Huang S and Ingber DE(1999) The structural and mechanical complexity of cell-growth control Nat Cell Biol 1: E131–138.

    CAS  PubMed  Google Scholar 

  • Hunt CA, Ropella GEP, Yan L, et al. (2006) Physiologically based synthetic models of hepatic disposition J Pharmacok Pharmacodyn 33: 737–772.

    Google Scholar 

  • Iruela-Arispe ML, Diglio CA and Sage EH (1991) Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro Arterioscler Thromb 11: 805–815.

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Hasselaar P and Sage H (1991) Differential expression of extracellular proteins is correlated with angiogenesis in vitro Lab Invest 64: 174–186.

    CAS  PubMed  Google Scholar 

  • Jackson T and Zheng X(2010) A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis Bull Math Biol 72: 830–868.

    PubMed  Google Scholar 

  • Jiang Y, Pjesivac-Grbovic J, Cantrell C, et al. (2005) A multiscale model for avascular tumor growth Biophys J 89: 3884–3894.

    CAS  PubMed  Google Scholar 

  • Kass L, Erler JT, Dembo M, et al. (2007) Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis International Journal of Biochemistry & Cell Biology 39: 1987–1994.

    CAS  Google Scholar 

  • Lamalice L, Le Boeuf F and Huot J (2007) Endothelial cell migration during angiogenesis Circ Res 100: 782–794.

    CAS  PubMed  Google Scholar 

  • Lee S, Jilani SM, Nikolova GV, et al. (2005) Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors J Cell Biol 169: 681–691.

    CAS  PubMed  Google Scholar 

  • Lowengrub JS, Frieboes HB, Jin F, et al. (2010) Nonlinear modeling of cancer: bridging the gap between cells and tumours Nonlinearity 23: R1–R91.

    CAS  PubMed  Google Scholar 

  • Lu M, Amano S, Miyamoto K, et al. (1999) Insulin-induced vascular endothelial growth factor expression in retina Invest Ophthalmol Vis Sci 40: 3281–3286.

    CAS  PubMed  Google Scholar 

  • Macklin P, Kim J, Tomaiuolo G, et al. (2009). Agent-Based Modeling of Ductal Carcinoma In Situ: Application to Patient-Specific Breast Cancer Modeling In: Pham T. Computational Biology Issues and Applications in Oncology New York, Springer: 77–111.

    Google Scholar 

  • Marino S, Hogue I, Ray CJ, et al. (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology J Theor Biol 254: 178–196.

    PubMed  Google Scholar 

  • Merks RM and Glazier JA(2005) A cell-centered approach to developmental biology Physica A 352: 113–130.

    Google Scholar 

  • Merks RM, Brodsky SV, Goligorksy MS, et al. (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling Dev Biol 289: 44–54.

    CAS  PubMed  Google Scholar 

  • Merks RM and Glazier JA(2006) Dynamic mechanisms of blood vessel growth Nonlinearity 19: C1-C10.

    PubMed  Google Scholar 

  • Merks RM, Perryn ED, Shirinifard A, et al. (2008) Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth PLoS Comput Biol 4: e1000163.

    PubMed  Google Scholar 

  • Merks RM and Koolwijk P(2009) Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling Math. Model. Nat. Phenom. 4: 149–171.

    Google Scholar 

  • Peirce SM, Van Gieson EJ and Skalak TC (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly FASEB J 18: 731–733.

    CAS  PubMed  Google Scholar 

  • Perryn ED, Czirok A and Little CD(2008) Vascular sprout formation entails tissue deformations and VE-cadherin-dependent cell-autonomous motility Dev Biol 313: 545–555.

    CAS  PubMed  Google Scholar 

  • Phng LK and Gerhardt H(2009) Angiogenesis: a team effort coordinated by notch Dev Cell 16: 196–208.

    CAS  PubMed  Google Scholar 

  • Qutub AA and Popel AS(2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting BMC Syst Biol 3: 13.

    PubMed  PubMed Central  Google Scholar 

  • Rangarajan R and Zaman MH(2008) Modeling cell migration in 3D: Status and challenges Cell Adh Migr 2: 106–109.

    PubMed  PubMed Central  Google Scholar 

  • Rejniak KA(2007) An immersed boundary framework for modeling the growth of individual cells: an application to the early tumour development J Theor Biol 247: 186–204.

    CAS  PubMed  Google Scholar 

  • Savill NJ and Merks RMH(2007). The Cellular Potts Model in Biomedicine.In: Anderson ARA, Chaplain MAJ and Rejniak KA. Single-Cell Based Models in Biology and Medicine, Birkhauser: 346.

    Google Scholar 

  • Senger DR, Claffey KP, Benes JE, et al. (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins Proc Natl Acad Sci USA 94: 13612–13617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirinifard A, Gens JS, Zaitlen BL, et al. (2009) 3D multi-cell simulation of tumor growth and angiogenesis PLoS One 4: e7190.

    Google Scholar 

  • Sholley MM, Ferguson GP, Seibel HR, et al. (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells Lab Invest 51: 624–634.

    CAS  PubMed  Google Scholar 

  • Swat MH, Hester SD, Balter AI, et al. (2009) Multicell simulations of development and disease using the CompuCell3D simulation environment Methods Mol Biol 500: 361–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo A, Mehes E, Kosa E, et al. (2008) Multicellular sprouting in vitro Biophys J 95: 2702–2710.

    CAS  PubMed  Google Scholar 

  • Tang J, Ley KF and Hunt CA(2007) Dynamics of in silico leukocyte rolling, activation, and adhesion BMC Syst Biol 1: e14.

    Google Scholar 

  • Turner S and Sherratt JA(2002) Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model J Theor Biol 216: 85–100.

    PubMed  Google Scholar 

  • Wallez Y and Huber P(2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis Biochim Biophys Acta 1778: 794–809.

    CAS  PubMed  Google Scholar 

  • Wolkenhauer O, Auffray C, Baltrusch S, et al. (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs Cancer Res 70: 12–13.

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, et al. (2000) Vascular-specific growth factors and blood vessel formation Nature 407: 242–248.

    CAS  PubMed  Google Scholar 

  • Yin Z, Noren D, Wang CJ, et al. (2008) Analysis of pairwise cell interactions using an integrated dielectrophoretic-microfluidic system Mol Syst Biol 4: 232.

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Athale CA and Deisboeck TS(2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer J Theor Biol 244: 96–107.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, Y., Bauer, A.L., Jackson, T.L. (2012). Cell-Based Models of Tumor Angiogenesis. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_6

Download citation

Publish with us

Policies and ethics