Skip to main content

Effect of Vascularization on Glioma Tumor Growth

  • Chapter
  • First Online:
Modeling Tumor Vasculature

Abstract

As a tumor grows beyond a critical size and becomes nutrient-limited, it requires delivery of new resources and removal of waste products. The development of a new vascular network to support tumor growth allows then oxygen and nutrient to reach tumor cells. In this chapter, we study the influence of vascularization on tumor growth with the help of a combination of in vivo data from implanted xenografts of U87 MG in nude mice brain and a mathematical model. We identify three different growth regimes occurring during the tumor development and investigate the interplay among these regimes and the vascularization dynamics. Our results show that the initial (avascular) tumor growth is followed by a transient regime characterized by over-vascularization, before relaxing to a dynamics where the tumor radius increases linearly in time. Our model suggests that this linear regime corresponds to the equilibration of vascularization and metabolic dynamics. We use our findings to discuss the initiation of angiogenic processes and the implications for anti-angiogenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Gaussian Markov process X(t) is a Markov process whose probability density function is Gaussian.

References

  • Ambrosi D, Bussolino F, Preziosi L (2005) A review of vasculogenesis models. Comp Math Meth Med 6:1–19

    Google Scholar 

  • Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857–900

    Article  CAS  PubMed  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bearer EL, Lowengrub JS, Chuang YL, Frieboes HB, Jin F, Wise SM, Ferrari M, Agus D, Cristini V (2009) Multiparameter computational modeling of tumor invasion. Canc Res 69(10):4493–4501

    Article  CAS  Google Scholar 

  • Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF (1997) Regulation of angiogenesis, Boston (MA): Birkhauser, chap Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine

    Google Scholar 

  • Brù A, Albertos S, Subiza JL, Garcia-Asenjo JL, Bru I (2003) The universal dynamics of tumor growth. Bioph J 85:2948–2961

    Article  Google Scholar 

  • Cristini V, Lowengrub J, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46:191–224

    Article  PubMed  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. NeuroImage 37:59–70

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Nat Canc Inst 94(12):883–893

    Article  Google Scholar 

  • Kevrekidis PG, Whitaker N, Good DJ, Herring GJ (2006) Minimal model for tumor angiogenesis. Phys Rev E 73:061,926

    Article  Google Scholar 

  • Lee O, Fueyo J, Xu J, Yung WK, Lemoine MG, Lang FF, Bekele BN, Zhou X, Alonso MA, Aldape KD, Fuller GN, Gomez-Manzano C (2006) Sustained angiopoietin-2 expression disrupts vessel formation and inhibits glioma growth. Neoplasia 8(5):419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucio-Eterovic AK, Piao Y, de Groot JF (2009) Mediators of glioblastoma resistance and invasion during antivascular endothelial growth factor therapy. Clin Cancer Res 15(14):4589–4599

    Article  CAS  PubMed  Google Scholar 

  • Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J (2009) Multiscale modeling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4-5):765–798

    Article  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modeling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64:673–702

    Article  CAS  PubMed  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modeling of dynamic adaptive tumour-induced angiogenesis: Clinical applications and therapeutic targeting strategies. J Theor Biol 241:564–589

    Article  PubMed  Google Scholar 

  • Merks RMH, Glazier JA (2006) Dynamic mechanisms of blood vessel growth. Nonlinearity 19:1–10

    Article  Google Scholar 

  • Merks RMH, Perrynand ED, Shirinifard A, Glazier JA (2008) Contact-inhibited chemotaxis in de-novo and sprouting blood-vessel growth. PLoS Comput Biol 4:e1000,163

    Article  Google Scholar 

  • Mikkelsen T, Enam SA, Rosenblum MR (2003) Invasion in malignant glioma, Philadelphia: W. B. Saunders Co., pp 687–713

    Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20:135–181

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW (2008) Modeling structural adaptation of microcirculation. Microcirculation 15(8):753–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol Heart Cir Physiol 275:349–360

    Article  Google Scholar 

  • Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modeling of flow in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Model 41:1137–1156

    Article  Google Scholar 

  • Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modeling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math Comput Model 44:96–123

    Article  Google Scholar 

  • Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99(2):419–430

    Article  PubMed  Google Scholar 

  • Sun C, Munn LL (2008) Lattice-boltzmann simulation of blood flow in digitized vessel networks. Comp Math Appl 55:1594–1600

    Article  Google Scholar 

  • Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67:313–337

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1957) The Strategy of the Genes. Geo Allen & Unwin, London

    Google Scholar 

  • Ward JP, King JR (1997) Mathematical modeling of avascular tumour growth. IMA J Math Appl Med Biol 14:36–69

    Article  Google Scholar 

  • Welter M, Rieger H (2010) Physical determinants of vascular network remodeling during tumor growth. Eur Phys J E Soft Matter 33:149–163

    Article  CAS  PubMed  Google Scholar 

  • Welter M, Bartha K, Rieger H (2008) Emergent vascular network inhomogenities and resulting blood flow patterns in a growing tumor. J Theor Biol 250:257–280

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xu SX, Long Q, Collins MW, Koenig CS, Zhao GP, Jiang YP, Padhani AR (2007) Simulation of microcirculation in solid tumors. In: IEEE/ICME Int. Conf. on Complex Med. Eng., pp 1555–1562

    Google Scholar 

  • Zhao G, Wu J, Xu S, Collins MW, Long Q, Koenig CS, Jiang Y, Wang J, Padhani AR (2007) Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis. Acta Mech Sinica 23:477–483

    Article  Google Scholar 

  • Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-set method. Bull Math Biol 67:211–259

    Article  CAS  PubMed  Google Scholar 

  • Zuelch KJ (1986) Brain tumors, 3rd edn. Heidelberg: Springer

    Book  Google Scholar 

Download references

Acknowledgements

HH, AC, and VC acknowledge support from The Cullen Trust for Health Care and the National Institute for Health, Integrative Cancer Biology Program: 1U54CA149196, for the Center for Systematic Modeling of Cancer Development. JL and VC acknowledge support from the National Science Foundation, Division of Mathematical Sciences. VC also acknowledges support from the National Cancer Institute. H. Hatzikirou and A. Chauvière contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Cristini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hatzikirou, H., Chauvière, A., Lowengrub, J., De Groot, J., Cristini, V. (2012). Effect of Vascularization on Glioma Tumor Growth. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_10

Download citation

Publish with us

Policies and ethics