Stem Cells and Alcohol-Related Cancers



Stem cells are populations of cells with the potential to develop into many different types of cells, tissues, and organs. Stem cells are characterized by their capacities of multipotency to differentiate or self-renew. They play a crucial role in many aspects of biology, from embryo development to tissue repair and maintenance. In many organs and tissues, they serve as an internal system for regeneration and repair. Stem cells divide essentially without limit to maintain the stem cell pool and replenish other cells as long as needed.


Stem Cell Cancer Stem Cell Adult Stem Cell Bone Marrow Mesenchymal Stem Cell Leukemia Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alcohol dehydrogenase


AKT/protein kinase B


Aldehyde dehydrogenase


Bone morphogenetic protein


Cancer stem cell


C-X-C chemokine receptor type 4


Cytochrome P450 2E1


Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1


Epidermal growth factor




Estrogen receptor


Embryonic stem (cell)


Fluorescence-activated cell sorting


Forkhead box A2


GATA-binding protein 6


Growth hormone




Gatekeeper mutation




Glutathione S transferase


Heart and neural crest derivatives-expressed 1


Hepatitis B virus


Hepatitis C virus


Homeobox expressed in ES cells 1


Homeobox protein Hox-B1


Insulin-like growth factor


Induced pluripotent stem (cell)


Leucine-rich-repeat-containing G-protein-coupled receptor 5


LIM homeobox 5


Leukemia inhibitory factor




Methylene-tetrahydrofolate reductase


Myogenic factor 5


Homeobox protein NANOG


Nonobese diabetic/severe combined immunodeficiency


Oval cells


Octamer-binding protein 4




Orthodenticle homologue 1


Polycomb group proteins


Zinc finger protein 42


Sal-like protein 4


SRY box-containing factor 2


Side population


Signal transducer and activator of transcription 3


Brachyury protein homolog


T-box transcription factor


Transcription factor 3 (E2A immunoglobulin enhancer-binding factors E12/E47)


Tumor-progenitor genes


Tumor suppressor genes


Zinc finger protein ZIC 3


  1. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, Danenberg E, van den Brink S, Korving J, Abo A, Peters PJ, Wright N, Poulsom R, Clevers H (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36.PubMedCrossRefGoogle Scholar
  2. Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–64.PubMedCrossRefGoogle Scholar
  3. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–31.PubMedCrossRefGoogle Scholar
  4. Blanpain C and Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–17.PubMedCrossRefGoogle Scholar
  5. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–7.PubMedCrossRefGoogle Scholar
  6. Civin CI, Small D (1995) Purification and expansion of human hematopoietic stem/progenitor cells. Ann N Y Acad Sci 770:91–8.PubMedCrossRefGoogle Scholar
  7. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, Visvader J, Weissman IL and Wahl GM (2006) Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–44.PubMedCrossRefGoogle Scholar
  8. Dalerba P, Cho RW, Clarke MF (2007) Cancer Stem Cells: Models and Concepts. Annu Rev Med 58:267–84.PubMedCrossRefGoogle Scholar
  9. Druesne-Pecollo N, Tehard B, Mallet Y, Gerber M, Norat T, Hercberg S, Latino-Martel P (2009) Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol 10:173–80.PubMedCrossRefGoogle Scholar
  10. Dumble ML, Croager EJ, Yeoh GC, Quail EA (2002) Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis 23:435–45.PubMedCrossRefGoogle Scholar
  11. Dumitrescu RG, Shields PG (2005) The etiology of alcohol-induced breast cancer. Alcohol 35:213–25.PubMedCrossRefGoogle Scholar
  12. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33.PubMedCrossRefGoogle Scholar
  13. Gao JX (2008) Cancer stem cells: the lessons from pre-cancerous stem cells. J Cell Mol Med 12:67–96.PubMedCrossRefGoogle Scholar
  14. Gieni RS, Hendzel MJ (2009) Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 87:711–46.PubMedCrossRefGoogle Scholar
  15. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–67.PubMedCrossRefGoogle Scholar
  16. Gupta PB, Chaffer CL, and Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–2.PubMedCrossRefGoogle Scholar
  17. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.PubMedCrossRefGoogle Scholar
  18. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–9.PubMedCrossRefGoogle Scholar
  19. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature. 2010 Jul 19. [Epub ahead of print]Google Scholar
  20. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–63.PubMedCrossRefGoogle Scholar
  21. Ishikawa H, Nakao K, Matsumoto K, Nishimura D, Ichikawa T, Hamasaki K, Eguchi K (2004) Bone marrow engraftment in a rodent model of chemical carcinogenesis but no role in the histogenesis of hepatocellular carcinoma. Gut 53:884–9.PubMedCrossRefGoogle Scholar
  22. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–8.PubMedCrossRefGoogle Scholar
  23. Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. Journal of Clinical Oncology 26:2806–12.PubMedCrossRefGoogle Scholar
  24. Li C, Kong Y, Wang H, Wang S, Yu H, Liu X, Yang L, Jiang X, Li L, Li L (2009) Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol 50:1174–83.PubMedCrossRefGoogle Scholar
  25. MacArthur BD, Ma’ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular reprogramming. Nat Rev Mol Cell Biol 10:672–81.PubMedGoogle Scholar
  26. Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3:237–46.PubMedCrossRefGoogle Scholar
  27. Pöschl G, Seitz HK (2004) Alcohol and cancer. Alcohol Alcohol39:155–65.PubMedGoogle Scholar
  28. Rountree CB, Ding W, He L, Stiles B (2009) Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice. Stem Cells 27:290–9.PubMedCrossRefGoogle Scholar
  29. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7:599–612.PubMedCrossRefGoogle Scholar
  30. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–31.PubMedCrossRefGoogle Scholar
  31. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72.PubMedCrossRefGoogle Scholar
  32. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76.PubMedCrossRefGoogle Scholar
  33. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–7.PubMedCrossRefGoogle Scholar
  34. van den Brink GR, Offerhaus GJ (2007) The morphogenetic code and colon cancer development. Cancer Cell 11:109–17.PubMedCrossRefGoogle Scholar
  35. Vermeulen L, Sprick MR, Kemper K, Stassi G and Medema JP (2008) Cancer stem cells – old concepts, new insights. Cell Death and Differentiation 15:947–58.PubMedCrossRefGoogle Scholar
  36. Visvader JE and Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–68.PubMedCrossRefGoogle Scholar
  37. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–99.PubMedCrossRefGoogle Scholar
  38. Williams GM, Gebhardt R, Sirma H, Stenback F (1993) Non-linearity of neoplastic conversion induced in rat liver by low exposures to diethylnitrosamine. Carcinogenesis 14:2149–56.PubMedCrossRefGoogle Scholar
  39. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–20.PubMedCrossRefGoogle Scholar
  40. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–32.PubMedCrossRefGoogle Scholar
  41. Zhou P, Hohm S, Olusanya Y, Hess DA, Nolta J (2009) Human progenitor cells with high aldehyde dehydrogenase activity efficiently engraft into damaged liver in a novel model. Hepatology. 49:1992–2000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Metabolism and Health EffectsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaUSA

Personalised recommendations