Skip to main content

Nonterminating q-Whipple Transformations for Basic Hypergeometric Series in U(n)

  • Chapter
  • First Online:
Book cover Partitions, q-Series, and Modular Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 23))

  • 1764 Accesses

Abstract

In this paper we derive multivariable generalizations of Bailey’s classical nonterminating q-Whipple and q-Saalschütz transformations. We work in the setting of multiple basic hypergeometric series very-well-poised on unitary groups U(n + 1), multiple series that are associated to the root system A n . We extend Bailey’s proofs of these transformations by first taking suitable limits of our U(n+ 1) 10ϕ9 transformation formula, in which the multiple sums are taken over an n-dimensional tetrahedron (n-simplex). A natural partition of the (finite) n-simplex combines with our analysis of the convergence of the multiple series to yield our transformations. We expect that all of these results will directly extend to the analogous case of multiple basic hypergeometric series associated to the root system D n .

MathematicsSubject Classification: Primary: 33D70, 05A19; Secondary: 05A30

The first author was partially supported by NSF grants DMS 86-04232, DMS 89-04455, DMS 90-96254, NSA supplements to these NSF grants, by NSF grant DMS 0100288, and by NSA grants MDA 904-88-H-2010, MDA 904-91-H-0055, MDA 904-93-H-3032, MDA 904-97-1-0019, MDA 904-99-1-0003, H98230-06-1-0064, and H98230-08-1-0093. Both authors were partially supported by NSA grant MDA 904-91-H-0055.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques; Polynomes d’Hermites, Gauthier-Villars, Paris, 1926.

    Google Scholar 

  2. G. Bhatnagar, Inverse relations, generalized bibasic series, and their U​(n) extensions, doctoral dissertation, The Ohio State University, 1995.

    Google Scholar 

  3. G. Bhatnagar, “D n basic hypergeometric series”, Ramanujan J. 3 (1999), 175–203.

    Google Scholar 

  4. G. Bhatnagar and S. C. Milne, “Generalized bibasic hypergeometric series, and their U​(n) extensions”, Adv. Math. 131 (1997), 188–252.

    Google Scholar 

  5. G. Bhatnagar and M. J. Schlosser, “C n and D n very-well-poised 10ϕ 9 transformations”, Constr. Approx. 14 (1998), 531–567.

    Google Scholar 

  6. D. M. Bressoud, A radical approach to Lebesgue’s theory of integration, Cambridge University Press, New York, 2008.

    MATH  Google Scholar 

  7. T. J. l’A. Bromwich, An introduction to the theory of infinite series, 2nd ed., Macmillan, London, 1949.

    Google Scholar 

  8. J. F. van de Bult and E. M. Rains, “Basic hypergeometric functions as limits of elliptic hypergeometric functions”, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 059, 31 pp.

    Google Scholar 

  9. H. Coskun, A BC n Bailey lemma and generalizations of Rogers-Ramanujan identities, doctoral dissertation, Texas A&M University, August 2003.

    Google Scholar 

  10. H. Coskun, “Research Statement”, September 7, 2007. (Latest version as of January 11, 2010 on http://faculty.tamu-commerce.edu/hcoskun/).

  11. H. Coskun, “An elliptic BC n Bailey lemma, multiple Rogers-Ramanujan identities and Euler’s pentagonal number theorems”, Trans. Amer. Math. Soc. 360 (2008), 5397–5433.

    Google Scholar 

  12. H. Coskun, “Multilateral basic hypergeometric summation identities and hyperoctahedral group symmetries”, Adv. Appl. Discrete Math. 5 (2010), 145–157.

    Google Scholar 

  13. H. Coskun, “Multiple analogues of binomial coefficients and families of related special numbers”, Discrete Math. 310 (2010), 2280–2298.

    Google Scholar 

  14. H. Coskun and R. A. Gustafson, “Well-poised Macdonald functions W λ and Jackson coefficients ωλ on BC n ”, Proceedings of the workshop on Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., Vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 127–155.

    Google Scholar 

  15. S. Degenhardt and S. C. Milne, “A nonterminating q​-Dougall summation theorem for basic hypergeometric series in U(n)”, preprint.

    Google Scholar 

  16. J. F. van Diejen, “ On certain multiple Bailey, Rogers and Dougall type summation formulas”, Publ. RIMS (Kyoto Univ.) 33 (1997), 483–508.

    Google Scholar 

  17. J. F. van Diejen and V. P. Spiridonov, “An elliptic Macdonald-Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett. 7 (2000), 729–746.

    Google Scholar 

  18. J. F. van Diejen and V. P. Spiridonov, “Elliptic Selberg integrals”, Internat. Math. Res. Notices 20 (2001), 1083–1110.

    Google Scholar 

  19. J. F. van Diejen and V. P. Spiridonov, “Modular hypergeometric residue sums of elliptic Selberg integrals”, Lett. Math. Phys. 58 (2001), 223–238.

    Google Scholar 

  20. G. B. Folland, Real analysis:modern techniques and their applications, Second Edition, Wiley, New York, 1999.

    MATH  Google Scholar 

  21. I. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Academic, San Diego, 1988.

    MATH  Google Scholar 

  22. I. B. Frenkel and V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, in: V. I. Arnold, I. M. Gelfand, V. S. Retakh and M. Smirnov (Eds.), The Arnold–Gelfand mathematical seminars, Birkhäuser, Boston, 1997, pp. 171–204.

    Chapter  Google Scholar 

  23. G. Gasper and M. Rahman, Basic hypergeometric series, Second Edition, Encyclopedia of Mathematics And Its Applications 96, Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  24. I. M. Gessel and C. Krattenthaler, “Cylindric partitions”, Trans. Amer. Math. Soc. 349 (1997), 429–479.

    Google Scholar 

  25. R. A. Gustafson, “Multilateral summation theorems for ordinary and basic hypergeometric series in U​(n)”, SIAM J. Math. Anal. 18 (1987), 1576–1596.

    Google Scholar 

  26. R. A. Gustafson, “The Macdonald identities for affine root systems of classical type and hypergeometric series very well-poised on semi-simple Lie algebras”, in Ramanujan International Symposium on Analysis (Dec. 26th to 28th, 1987, Pune, India), N. K. Thakare (ed.) (1989), 187–224.

    Google Scholar 

  27. R. A. Gustafson, “A summation theorem for hypergeometric series very-well-poised on G 2”, SIAM J. Math. Anal. 21 (1990), 510–522.

    Google Scholar 

  28. R. A. Gustafson and M. A. Rakha, “q-beta integrals and multivariate basic hypergeometric series associated to root systems of type A m ”, Conference on Combinatorics and Physics (Los Alamos, NM, 1998), Ann. Comb. 4 (2000), 347–373.

    Google Scholar 

  29. W. J. Holman III, L. C. Biedenharn, J. D. Louck, “On hypergeometric series well-poised in SU​(n)”, SIAM J. Math. Anal. 7 (1976), 529–541.

    Google Scholar 

  30. J. Horn, “Ueber die Convergenz der hypergeometrische Reihen zweier und dreier Veränderlichen”, Math. Ann. 34 (1889), 544–600.

    Google Scholar 

  31. M. Ito, “A product formula for Jackson integral associated with the root system F 4”, Ramanujan J. 6 (2002), 279–293.

    Google Scholar 

  32. M. Ito, “Symmetry classification for Jackson integrals associated with the root system BC n ”, Compositio Math. 136 (2003), 209–216.

    Google Scholar 

  33. Y. Kajihara, “Some remarks on multiple Sears transformations”, Proceedings of the conference on “q-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000)”, Contemp. Math., Vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 139–145.

    Google Scholar 

  34. Y. Kajihara, “Euler transformation formula for multiple basic hypergeometric series of type A and some applications”, Adv. Math. 187 (2004), 53–97.

    Google Scholar 

  35. Y. Kajihara, “A multiple Bailey transformation”, preprint of March 12, 2009.

    Google Scholar 

  36. Y. Kajihara and M. Noumi, “Raising operators of row type for Macdonald polynomials”, Compositio Math. 120 (2000), 119–136.

    Google Scholar 

  37. Y. Kajihara and M. Noumi, “Multiple elliptic hypergeometric series. An approach from the Cauchy determinant”, Indag. Math. (N.S.) 14 (2003), 395–421.

    Google Scholar 

  38. C. Krattenthaler, “The major counting of nonintersecting lattice paths and generating functions for tableaux”, Mem. Amer. Math. Soc. 115 (1995).

    Google Scholar 

  39. C. Krattenthaler and M. Schlosser, “A new multidimensional matrix inverse with applications to multiple q-series”, Discrete Math. 204 (1999), 249–279.

    Google Scholar 

  40. A. Lascoux, E. M. Rains, and S. O. Warnaar, “Nonsymmetric interpolation Macdonald polynomials and gl n basic hypergeometric series”, Transform. Groups 14 (2009), 613–647.

    Google Scholar 

  41. M. Lassalle and M. Schlosser, “Inversion of the Pieri formula for Macdonald polynomials”, Adv. Math. 202 (2006), 289–325.

    Google Scholar 

  42. G. M. Lilly and S. C. Milne, “The C l Bailey transform and Bailey lemma”, Constr. Approx. 9 (1993), 473–500.

    Google Scholar 

  43. A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics 348, Springer, New York, 1973.

    Google Scholar 

  44. S. C. Milne, “A q-analog of the 5 F 4(1) summation theorem for hypergeometric series well-poised in SU(n)”, Adv. Math. 57 (1985), 14–33.

    Google Scholar 

  45. S. C. Milne, “An elementary proof of the Macdonald identities for A l (1)”, Adv. Math. 57 (1985), 34–70.

    Google Scholar 

  46. S. C. Milne, “A q-analog of hypergeometric series well-poised in SU(n) and invariant G-functions”, Adv. in Math. 58 (1985), 1–60.

    Google Scholar 

  47. S. C. Milne, “A U​(n) generalization of Ramanujan’s 1 Ψ 1 summation”, J. Math. Anal. Appl. 118 (1986), 263–277.

    Google Scholar 

  48. S. C. Milne, “Basic hypergeometric series very well-poised in U​(n)”, J. Math. Anal. Appl. 122 (1987), 223–256.

    Google Scholar 

  49. S. C. Milne, “A q-analog of the Gauss summation theorem for hypergeometric series in U​(n)”, Adv. in Math. 72 (1988), 59–131.

    Google Scholar 

  50. S. C. Milne, “Multiple q-series and U​(n) generalizations of Ramanujan’s 1ψ1 sum”, Ramanujan Revisited (G. E. Andrews et al., eds.), Academic, New York, 1988, pp. 473–524.

    Google Scholar 

  51. S. C. Milne, “The multidimensional 1 Ψ 1 sum and Macdonald identities for A (1)”, Theta Functions Bowdoin 1987 (L. Ehrenpreis and R. C. Gunning, eds.), Proc. Sympos. Pure Math. 49 (Part 2) (1989), 323–359.

    Google Scholar 

  52. S. C. Milne, “Classical partition functions and the U​(n + 1) Rogers-Selberg identity”, Discrete Math. 99 (1992), 199–246.

    Google Scholar 

  53. S. C. Milne, “A q-analog of a Whipple’s transformation for hypergeometric series in U​(n)”, Adv. Math. 108 (1994), 1–76.

    Google Scholar 

  54. S. C. Milne, “The C l Rogers–Selberg identity”, SIAM J. Math. Anal. 25 (1994), 571–595.

    Google Scholar 

  55. S. C. Milne, “New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function”, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 15004–15008.

    Google Scholar 

  56. S. C. Milne, “Balanced 3ϕ 2 summation theorems for U​(n) basic hypergeometric series”, Adv. Math. 131 (1997), 93–187.

    Google Scholar 

  57. S. C. Milne, “New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function”, in Formal Power Series and Algebraic Combinatorics, 9th Conference, July 14–July 18, 1997, Universitt Wien, Conference Proceedings – Volume 3 of 3 (P. Kirschenhofer, C. Krattenthaler, D. Krob, and H. Prodinger, eds.), FPSAC’97 (1997), 403–417.

    Google Scholar 

  58. S. C. Milne, “Transformations of U​(n + 1) multiple basic hypergeometric series”, in: A. N. Kirillov, A. Tsuchiya, and H. Umemura (Eds.), Physics and combinatorics: Proceedings of the Nagoya 1999 international workshop (Nagoya University, Japan, August 23–27, 1999), World Scientific, Singapore, 2001, pp. 201–243.

    Chapter  Google Scholar 

  59. S. C. Milne, “Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions”, Ramanujan J. 6 (2002), 7–149.  (Also published as vol. 5 of Developments in Mathematics, Kluwer Academic Publishers, Dordrecht, 2002. (ISBN # 1-4020-0491-5.) Now, Springer, New York.)

    Google Scholar 

  60. S. C. Milne and G. M. Lilly, “Consequences of the A l and C l Bailey transform and Bailey lemma”, Discrete Math. 139 (1995), 319–346.

    Google Scholar 

  61. S. C. Milne and J. W. Newcomb, “U​(n) very-well-poised 10ϕ 9 transformations”, J. Comput. Appl. Math. 68 (1996), 239–285.

    Google Scholar 

  62. S. C. Milne and M. Schlosser, “A new A n extension of Ramanujan’s 1ψ1 summation with applications to multilateral A n series”, Rocky Mount. J. Math. 32 (2002), 759–792.

    Google Scholar 

  63. E. M. Rains, “BC n -symmetric Abelian functions”, Duke Math. J. 135 (2006), 99–180.

    Google Scholar 

  64. E. M. Rains, “Limits of elliptic hypergeometric integrals”, Ramanujan J. 18 (2009), 257–306.

    Google Scholar 

  65. E. M. Rains, “Transformations of elliptic hypergeometric integrals”, Ann. of Math. (2) 171 (2010), 169–243.

    Google Scholar 

  66. M. A. Rakha, “Some basic extensions of Gustafson-Rakha’s multivariate basic hypergeometric series”, Ann. Comb. 6 (2002), 107–115.

    Google Scholar 

  67. M. A. Rakha, “Multivariate basic hypergeometric series associated to root systems of type A m ”, J. Math. Anal. Appl. 294 (2004), 181–195.

    Google Scholar 

  68. M. A. Rakha and R. N. Siddiqi, “q-beta and elliptic type integrals”, Int. J. Appl. Math. 10 (2002), 385–401.

    Google Scholar 

  69. H. Rosengren, “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, Contemp. Math. 291 (2001), 193–202.

    Google Scholar 

  70. H. Rosengren, “Elliptic hypergeometric series on root systems”, Adv. Math. 181 (2004), 417–447.

    Google Scholar 

  71. H. Rosengren, “Reduction formulas for Karlsson-Minton-type hypergeometric functions”, Constr. Approx. 20 (2004), 525–548.

    Google Scholar 

  72. H. Rosengren and M. Schlosser, “Summations and transformations for multiple basic and elliptic hypergeometric series by determinant evaluations”, Indag. Math. (N.S.) 14 (2003), 483–513.

    Google Scholar 

  73. H. Rosengren and M. Schlosser, “Multidimensional matrix inversions and elliptic hypergeometric series on root systems”, in preparation.

    Google Scholar 

  74. M. Schlosser, “Multidimensional matrix inversions and A r and D r basic hypergeometric series”, Ramanujan J. 1 (1997), 243–274.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Schlosser, “Some new applications of matrix inversions in A r ”, Ramanujan J. 3 (1999), 405–461.

    Article  MathSciNet  MATH  Google Scholar 

  76. M. Schlosser, “Summation theorems for multidimensional basic hypergeometric series by determinant evaluations”, Discrete Math. 210 (2000), 151–169.

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Schlosser, “A nonterminating 8ϕ 7 summation for the root system C r ”, Proceedings of the International Conference on Special Functions and their Applications (Chennai, 2002), J. Comput. Appl. Math. 160 (2003), 283–296.

    Google Scholar 

  78. M. Schlosser, “Multilateral inversion of A r , C r , and D r basic hypergeometric series”, Ann. Comb. 13 (2009), 341–363.

    Google Scholar 

  79. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.

    MATH  Google Scholar 

  80. V. P. Spiridonov, “Elliptic beta integrals and special functions of hypergeometric type”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), Kluwer Acad. Publ., Dordrecht, 2001, pp. 305–313.

    Google Scholar 

  81. V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem. 77, Kluwer, Dordrecht, 2002, pp. 307–327.

    Google Scholar 

  82. S. O. Warnaar, “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx. 18 (2002), 479–502.

    Google Scholar 

  83. S. O. Warnaar and W. Zudilin, “Dedekind’s η-function and Rogers–Ramanujan identities”, preprint arXiv:1001.1571v1 of January 11, 2010.

    Google Scholar 

  84. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge University Press, Cambridge, 1927.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Milne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Milne, S.C., Newcomb, J.W. (2012). Nonterminating q-Whipple Transformations for Basic Hypergeometric Series in U(n). In: Alladi, K., Garvan, F. (eds) Partitions, q-Series, and Modular Forms. Developments in Mathematics, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0028-8_12

Download citation

Publish with us

Policies and ethics