Jaagsiekte Sheep Retrovirus and Lung Cancer

Part of the Current Cancer Research book series (CUCR)


Jaagsiekte sheep retrovirus (JSRV) is an exogenous betarerovirus that causes a contagious form of lung cancer in sheep termed ovine pulmonary adenocarcinoma (OPA). OPA is derived from oncogenically transformed secretory lung epithelial cells, type II pneumocytes, and Clara cells located in the distal airways. In vitro and in vivo studies demonstrate that the envelope protein (Env) is an oncogene because its expression alone can transform cells in culture and induce tumors in animals. Model systems to study Env transformation and mechanisms of transformation are discussed. Although JSRV can infect numerous cell types, pathology is largely restricted to the lung because the viral LTR is only transcriptionally active in differentiated airway epithelial cells. The transcriptional specificity of the JSRV LTR and its role in disease outcome are discussed. Sheep contain endogenous copies of JSRV, some of which are important in embryonic development (placentation), and others serve as restriction factors for exogenous JSRV infections.


MDCK Cell Mouse Mammary Tumor Virus Clara Cell Mouse Mammary Tumor Virus Ovine Pulmonary Adenocarcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham RT (2002) Identification of TOR signaling complexes: more TORC for the cell growth engine. Cell 111(1):9–12PubMedGoogle Scholar
  2. Akagi T, Shimotohno K (1993) Proliferative response of Tax1-transduced primary human T cells to anti-CD3 antibody stimulation by an interleukin-2-independent pathway. J Virol 67(3):1211–1217PubMedGoogle Scholar
  3. Alberti A, Murgia C et al (2002) Envelope-induced cell transformation by ovine betaretroviruses. J Virol 76(11):5387–5394PubMedGoogle Scholar
  4. Al-Hajj M, Wicha MS et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988PubMedGoogle Scholar
  5. Allen TE, Sherrill KJ et al (2002) The jaagsiekte sheep retrovirus envelope gene induces transformation of the avian fibroblast cell line DF-1 but does not require a conserved SH2 binding domain. J Gen Virol 83(Pt 11):2733–2742PubMedGoogle Scholar
  6. Arnaud F, Caporale M et al (2007) A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog 3(11):e170PubMedGoogle Scholar
  7. Arnaud F, Varela M et al (2008) Coevolution of endogenous betaretroviruses of sheep and their host. Cell Mol Life Sci 65(21):3422–3432PubMedGoogle Scholar
  8. Bai J, Zhu RY et al (1996) Unique long terminal repeat U3 sequences distinguish exogenous jaagsiekte sheep retroviruses associated with ovine pulmonary carcinoma from endogenous loci in the sheep genome. J Virol 70(5):3159–3168PubMedGoogle Scholar
  9. Bai J, Bishop JV et al (1999) Sequence comparison of JSRV with endogenous proviruses: envelope genotypes and a novel ORF with similarity to a G-protein-coupled receptor. Virology 258(2):333–343PubMedGoogle Scholar
  10. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12(8):397–408PubMedGoogle Scholar
  11. Bellacosa A, Testa JR et al (2004) A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 3(3):268–275PubMedGoogle Scholar
  12. Best S, Le Tissier PR et al (1997) Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol 5(8):313–318PubMedGoogle Scholar
  13. Beytut E, Sozmen M et al (2009) Immunohistochemical detection of pulmonary surfactant proteins and retroviral antigens in the lungs of sheep with pulmonary adenomatosis. J Comp Pathol 140(1):43–53PubMedGoogle Scholar
  14. Bingle CD, Hackett BP et al (1995) Role of hepatocyte nuclear factor-3 alpha and hepatocyte nuclear factor-3 beta in Clara cell secretory protein gene expression in the bronchiolar epithelium. Biochem J 308(Pt 1):197–202PubMedGoogle Scholar
  15. Bittner JJ (1942) The milk-influence of breast tumors in mice. Science 95(2470):462–463PubMedGoogle Scholar
  16. Blond JL, Beseme F et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73(2):1175–1185PubMedGoogle Scholar
  17. Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 343–436Google Scholar
  18. Bohinski RJ, Di Lauro R et al (1994) The lung-specific surfactant protein B gene promoter is a target for thyroid transcription factor 1 and hepatocyte nuclear factor 3, indicating common factors for organ-specific gene expression along the foregut axis. Mol Cell Biol 14(9):5671–5681PubMedGoogle Scholar
  19. Bruno MA, Bohinski RJ et al (1995) Structure and function of the mouse surfactant protein B gene. Am J Physiol 268(3 Pt 1):L381–L389PubMedGoogle Scholar
  20. Caporale M, Centorame P et al (2005) Infection of lung epithelial cells and induction of pulmonary adenocarcinoma is not the most common outcome of naturally occurring JSRV infection during the commercial lifespan of sheep. Virology 338(1):144–153PubMedGoogle Scholar
  21. Caporale M, Cousens C et al (2006) Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce lung tumors in sheep. J Virol 80(16):8030–8037PubMedGoogle Scholar
  22. Chaudhry AZ, Lyons GE et al (1997) Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn 208(3):313–325PubMedGoogle Scholar
  23. Chitra E, Yu SL et al (2009) Generation and characterization of JSRV envelope transgenic mice in FVB background. Virology 393(1):120–126PubMedGoogle Scholar
  24. Chow YH, Alberti A et al (2003) Transformation of rodent fibroblasts by the jaagsiekte sheep retrovirus envelope is receptor independent and does not require the surface domain. J Virol 77(11):6341–6350PubMedGoogle Scholar
  25. Clevidence DE, Overdier DG et al (1994) Members of the HNF-3/forkhead family of transcription factors exhibit distinct cellular expression patterns in lung and regulate the surfactant protein B promoter. Dev Biol 166(1):195–209PubMedGoogle Scholar
  26. Coetzee S, Els HJ et al (1976) Transmission of jaagsiekte (ovine pulmonary adenomatosis) by means of a permanent epithelial cell line established from affected lungs. Onderstepoort J Vet Res 43(3):133–141PubMedGoogle Scholar
  27. Coffin JM (1992) Structure and classification of retroviruses. In: Levy JA (ed) The retroviridae, vol 1. Plenum, New York, NY, pp 19–49Google Scholar
  28. Coffin JM (2004) Evolution of retroviruses: fossils in our DNA. Proc Am Philos Soc 148(3):264–280PubMedGoogle Scholar
  29. Coil DA, Strickler JH et al (2001) Jaagsiekte sheep retrovirus Env protein stabilizes retrovirus vectors against inactivation by lung surfactant, centrifugation, and freeze-thaw cycling. J Virol 75(18):8864–8867PubMedGoogle Scholar
  30. Comoglio PM, Boccaccio C (1996) The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes Cells 1(4):347–354PubMedGoogle Scholar
  31. Costa RH, Kalinichenko VV et al (2001) Transcription factors in mouse lung development and function. Am J Physiol Lung Cell Mol Physiol 280(5):L823–L838PubMedGoogle Scholar
  32. Cousens C, Minguijon E et al (1996) PCR-based detection and partial characterization of a retrovirus associated with contagious intranasal tumors of sheep and goats. J Virol 70(11):7580–7583PubMedGoogle Scholar
  33. Cousens C, Minguijon E et al (1999) Complete sequence of enzootic nasal tumor virus, a retrovirus associated with transmissible intranasal tumors of sheep. J Virol 73(5):3986–3993PubMedGoogle Scholar
  34. Cousens C, Maeda N et al (2007) In vivo tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not full-length orfX open reading frame. Virology 367(2):413–421PubMedGoogle Scholar
  35. Cousens C, Thonur L et al (2009) Jaagsiekte sheep retrovirus is present at high concentration in lung fluid produced by ovine pulmonary adenocarcinoma-affected sheep and can survive for several weeks at ambient temperatures. Res Vet Sci 87(1):154–156PubMedGoogle Scholar
  36. Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28(8):419–424PubMedGoogle Scholar
  37. Dakessian RM, Fan H (2008) Specific in vivo expression in type II pneumocytes of the Jaagsiekte sheep retrovirus long terminal repeat in transgenic mice. Virology 372(2):398–408PubMedGoogle Scholar
  38. Dakessian RM, Inoshima Y et al (2007) Tumors in mice transgenic for the envelope protein of Jaagsiekte sheep retrovirus. Virus Genes 35(1):73–80PubMedGoogle Scholar
  39. Danilkovitch-Miagkova A, Miagkov A et al (2001) Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the beta-catenin pathway. Mol Cell Biol 21(17):5857–5868PubMedGoogle Scholar
  40. Danilkovitch-Miagkova A, Duh FM et al (2003) Hyaluronidase 2 negatively regulates RON receptor tyrosine kinase and mediates transformation of epithelial cells by jaagsiekte sheep retrovirus. Proc Natl Acad Sci USA 100(8):4580–4585PubMedGoogle Scholar
  41. De Las Heras M, Calafat J, Jaime JM, Garcia De Jalon JA, Ferrer LM, Garcia Goti M, Minguijon E (1992) Sheep pulmonary adenomatosis (jaagsiekte) in slaughtered sheep. Variation in pathological characteristics. Med Vet 9:52–53Google Scholar
  42. De Las Heras M, Barsky SH et al (2000) Evidence for a protein related immunologically to the jaagsiekte sheep retrovirus in some human lung tumours. Eur Respir J 16(2):330–332PubMedGoogle Scholar
  43. De Las Heras M, Gonzalez L et al (2003) Pathology of ovine pulmonary adenocarcinoma. Curr Top Microbiol Immunol 275:25–54PubMedGoogle Scholar
  44. De Las Heras M, Ortin A et al (2006) In-situ demonstration of mitogen-activated protein kinase Erk 1/2 signalling pathway in contagious respiratory tumours of sheep and goats. J Comp Pathol 135(1):1–10PubMedGoogle Scholar
  45. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688PubMedGoogle Scholar
  46. DeMartini JC, York DF (1997) Retrovirus-associated neoplasms of the respiratory system of sheep and goats. Ovine pulmonary carcinoma and enzootic nasal tumor. Vet Clin North Am Food Anim Pract 13(1):55–70PubMedGoogle Scholar
  47. Demartini JC, Rosadio RH et al (1988) The etiology and pathogenesis of ovine pulmonary carcinoma (sheep pulmonary adenomatosis). Vet Microbiol 17(3):219–236PubMedGoogle Scholar
  48. DeMartini JC, Bishop JV et al (2001) Jaagsiekte sheep retrovirus proviral clone JSRV(JS7), derived from the JS7 lung tumor cell line, induces ovine pulmonary carcinoma and is integrated into the surfactant protein A gene. J Virol 75(9):4239–4246PubMedGoogle Scholar
  49. Dirks C, Duh FM et al (2002) Mechanism of cell entry and transformation by enzootic nasal tumor virus. J Virol 76(5):2141–2149PubMedGoogle Scholar
  50. Dobbs LG, Williams MC et al (1985) Changes in biochemical characteristics and pattern of lectin binding of alveolar type II cells with time in culture. Biochim Biophys Acta 846(1):155–166PubMedGoogle Scholar
  51. Duh FM, Dirks C et al (2005) Amino acid residues that are important for Hyal2 function as a receptor for jaagsiekte sheep retrovirus. Retrovirology 2:59PubMedGoogle Scholar
  52. Dungal N (1938) epizootic adenomatosis of the lungs of sheep: its relation to verminous pneumonia and jaagsiekte: (section of comparative medicine). Proc R Soc Med 31(5):497–505PubMedGoogle Scholar
  53. Dungal N (1946) Experiments with Jaagsiekte. Am J Pathol 22(4):737–759Google Scholar
  54. Dunlap KA, Palmarini M et al (2005) Sheep endogenous betaretroviruses (enJSRVs) and the hyaluronidase 2 (HYAL2) receptor in the ovine uterus and conceptus. Biol Reprod 73(2):271–279PubMedGoogle Scholar
  55. Dunlap KA, Palmarini M et al (2006a) Ovine endogenous betaretroviruses (enJSRVs) and placental morphogenesis. Placenta 27(Suppl A):S135–S140PubMedGoogle Scholar
  56. Dunlap KA, Palmarini M et al (2006b) Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc Natl Acad Sci USA 103(39):14390–14395PubMedGoogle Scholar
  57. Dupressoir A, Marceau G et al (2005) Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA 102(3):725–730PubMedGoogle Scholar
  58. Ellerman V, Bang O (1908) Experimentelle leukamie bei Huhnern. Fizentralblatt Bakteriologie Zentralblatt der bakteriologie 46:595–609Google Scholar
  59. Fan H, Brightman BK et al (1997) Early (preleukemic) events in Moloney murine leukemia virus leukemogenesis. Leukemia 11(Suppl 3):149–151PubMedGoogle Scholar
  60. Garcia-Goti M, Gonzalez L et al (2000) Sheep pulmonary adenomatosis: characterization of two pathological forms associated with jaagsiekte retrovirus. J Comp Pathol 122(1):55–65PubMedGoogle Scholar
  61. Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26(3):291–315PubMedGoogle Scholar
  62. Golovkina TV, Chervonsky A et al (1992) Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69(4):637–645PubMedGoogle Scholar
  63. Gonzalez L, Juste R, Cuervo LA, Idigoras I, Saez De Ocariz C (1993) Pathological and epidemiological aspects of the coexistence of maedi-visna and sheep pulmonary adenomatosis. Res Vet Sci 54:140–146PubMedGoogle Scholar
  64. Grassmann R, Berchtold S et al (1992) Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture. J Virol 66(7):4570–4575PubMedGoogle Scholar
  65. Grego E, De Meneghi D et al (2008) Colostrum and milk can transmit jaagsiekte retrovirus to lambs. Vet Microbiol 130(3–4):247–257PubMedGoogle Scholar
  66. Gross L (1951) “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embrvos. Proc Soc Exp Biol Med 76(1):27–32PubMedGoogle Scholar
  67. Grossman WJ, Kimata JT et al (1995) Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 92(4):1057–1061PubMedGoogle Scholar
  68. Hansen GM, Skapura D et al (2000) Genetic profile of insertion mutations in mouse leukemias and lymphomas. Genome Res 10(2):237–243PubMedGoogle Scholar
  69. Harris JR (1991) The evolution of placental mammals. FEBS Lett 295(1–3):3–4PubMedGoogle Scholar
  70. Hecht SJ, Carlson JO et al (1994) Analysis of a type D retroviral capsid gene expressed in ovine pulmonary carcinoma and present in both affected and unaffected sheep genomes. Virology 202(1):480–484PubMedGoogle Scholar
  71. Hecht SJ, Stedman KE et al (1996) Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc Natl Acad Sci USA 93(8):3297–3302PubMedGoogle Scholar
  72. Hofacre A, Fan H (2004) Multiple domains of the Jaagsiekte sheep retrovirus envelope protein are required for transformation of rodent fibroblasts. J Virol 78(19):10479–10489PubMedGoogle Scholar
  73. Hofacre A, Nitta T et al (2009) Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J Virol 83(23):12483–12498PubMedGoogle Scholar
  74. Holland MJ, Palmarini M et al (1999) Jaagsiekte retrovirus is widely distributed both in T and B lymphocytes and in mononuclear phagocytes of sheep with naturally and experimentally acquired pulmonary adenomatosis. J Virol 73(5):4004–4008PubMedGoogle Scholar
  75. Hudachek SF, Kraft SL et al (2010) Lung tumor development and spontaneous regression in lambs coinfected with Jaagsiekte sheep retrovirus and ovine lentivirus. Vet Pathol 47(1):148–162PubMedGoogle Scholar
  76. Hull S, Fan H (2006) Mutational analysis of the cytoplasmic tail of jaagsiekte sheep retrovirus envelope protein. J Virol 80(16):8069–8080PubMedGoogle Scholar
  77. Hunter AR, Munro R (1983) The diagnosis, occurrence and distribution of sheep pulmonary adenomatosis in Scotland 1975 to 1981. Br Vet J 139(2):153–164PubMedGoogle Scholar
  78. Indik S, Gunzburg WH et al (2005) A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology 337(1):1–6PubMedGoogle Scholar
  79. Johnson C, Sanders K et al (2010) Jaagsiekte sheep retrovirus transformation in Madin-Darby canine kidney epithelial cell three-dimensional culture. J Virol 84(10):5379–5390PubMedGoogle Scholar
  80. Kalter SS, Heberling RL et al (1975) A comparative study on the presence of C-type viral particles in placentas from primates and other animals. Bibl Haematol 40:391–401PubMedGoogle Scholar
  81. Kim CF, Jackson EL et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835PubMedGoogle Scholar
  82. Lander ES, Linton LM et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedGoogle Scholar
  83. Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114(Pt 16):2903–2910PubMedGoogle Scholar
  84. Lepperdinger G, Strobl B et al (1998) HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem 273(35):22466–22470PubMedGoogle Scholar
  85. Li J, Shen H et al (1999) Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 23(3):348–353PubMedGoogle Scholar
  86. Li C, Heidt DG et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037PubMedGoogle Scholar
  87. Liu SL, Miller AD (2005) Transformation of madin-darby canine kidney epithelial cells by sheep retrovirus envelope proteins. J Virol 79(2):927–933PubMedGoogle Scholar
  88. Liu SL, Duh FM et al (2003a) Role of virus receptor Hyal2 in oncogenic transformation of rodent fibroblasts by sheep betaretrovirus env proteins. J Virol 77(5):2850–2858PubMedGoogle Scholar
  89. Liu SL, Lerman MI et al (2003b) Putative phosphatidylinositol 3-kinase (PI3K) binding motifs in ovine betaretrovirus Env proteins are not essential for rodent fibroblast transformation and PI3K/Akt activation. J Virol 77(14):7924–7935PubMedGoogle Scholar
  90. Lower R, Tonjes RR et al (1995) Identification of a Rev-related protein by analysis of spliced transcripts of the human endogenous retroviruses HTDV/HERV-K. J Virol 69(1):141–149PubMedGoogle Scholar
  91. Lower R, Lower J et al (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93(11):5177–5184PubMedGoogle Scholar
  92. Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112(1):19–28PubMedGoogle Scholar
  93. Mackay JM, Nisbet DI (1966) Jaagsiekte – a hazard of intensified sheep husbandry. Vet Rec 78(1):18–24PubMedGoogle Scholar
  94. Maeda N, Palmarini M et al (2001) Direct transformation of rodent fibroblasts by jaagsiekte sheep retrovirus DNA. Proc Natl Acad Sci USA 98(8):4449–4454PubMedGoogle Scholar
  95. Maeda N, Inoshima Y et al (2003) Transformation of mouse fibroblasts by Jaagsiekte sheep retrovirus envelope does not require phosphatidylinositol 3-kinase. J Virol 77(18):9951–9959PubMedGoogle Scholar
  96. Maeda N, Fu W et al (2005) Roles of the Ras-MEK-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt-mTOR pathways in Jaagsiekte sheep retrovirus-induced transformation of rodent fibroblast and epithelial cell lines. J Virol 79(7):4440–4450PubMedGoogle Scholar
  97. Maitland NJ, Collins AT (2008) Prostate cancer stem cells: a new target for therapy. J Clin Oncol 26(17):2862–2870PubMedGoogle Scholar
  98. Malkinson AM, Dwyer-Nield LD et al (1997) Mouse lung epithelial cell lines – tools for the study of differentiation and the neoplastic phenotype. Toxicology 123(1–2):53–100PubMedGoogle Scholar
  99. Manzer R, Wang J et al (2006) Alveolar epithelial cells secrete chemokines in response to IL-1beta and lipopolysaccharide but not to ozone. Am J Respir Cell Mol Biol 34(2):158–166PubMedGoogle Scholar
  100. Marchetti A, Martella C et al (2005) EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23(4):857–865PubMedGoogle Scholar
  101. Margana RK, Boggaram V (1997) Functional analysis of surfactant protein B (SP-B) promoter. Sp1, Sp3, TTF-1, and HNF-3alpha transcription factors are necessary for lung cell-specific activation of SP-B gene transcription. J Biol Chem 272(5):3083–3090PubMedGoogle Scholar
  102. Markson LM, Spence JB et al (1983) Investigations of a flock heavily infected with maedi-visna virus. Vet Rec 112(12):267–271PubMedGoogle Scholar
  103. Martin WB, Scott FM et al (1976) Experimental production of sheep pulmonary adenomatosis (Jaagsiekte). Nature 264(5582):183–185PubMedGoogle Scholar
  104. McGee-Estrada K, Fan H (2006) In vivo and in vitro analysis of factor binding sites in Jaagsiekte sheep retrovirus long terminal repeat enhancer sequences: roles of HNF-3, NF-I, and C/EBP for activity in lung epithelial cells. J Virol 80(1):332–341PubMedGoogle Scholar
  105. McGee-Estrada K, Fan H (2007) Comparison of LTR enhancer elements in sheep beta retroviruses: insights into the basis for tissue-specific expression. Virus Genes 35(2):303–312PubMedGoogle Scholar
  106. McGee-Estrada K, Palmarini M et al (2002) HNF-3beta is a critical factor for the expression of the Jaagsiekte sheep retrovirus long terminal repeat in type II pneumocytes but not in Clara cells. Virology 292(1):87–97PubMedGoogle Scholar
  107. McManus EJ, Alessi DR (2002) TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol 4(9):E214–E216PubMedGoogle Scholar
  108. Mertz JA, Simper MS et al (2005) Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J Virol 79(23):14737–14747PubMedGoogle Scholar
  109. Mi S, Lee X et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403(6771):785–789PubMedGoogle Scholar
  110. Mikkers H, Allen J et al (2002) High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 32(1):153–159PubMedGoogle Scholar
  111. Miller AD, Van Hoeven NS et al (2004) Transformation and scattering activities of the receptor tyrosine kinase RON/Stk in rodent fibroblasts and lack of regulation by the jaagsiekte sheep retrovirus receptor, Hyal2. BMC Cancer 4:64PubMedGoogle Scholar
  112. Miller AD, Vigdorovich V et al (2006) Hyal2, where are you? Osteoarthritis Cartilage 14(12):1315–1317PubMedGoogle Scholar
  113. Mura M, Murcia P et al (2004) Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc Natl Acad Sci USA 101(30):11117–11122PubMedGoogle Scholar
  114. Nakagawa K, Harrison LC (1996) The potential roles of endogenous retroviruses in autoimmunity. Immunol Rev 152:193–236PubMedGoogle Scholar
  115. Nerenberg M, Hinrichs SH et al (1987) The tat gene of human T-lymphotropic virus type 1 induces mesenchymal tumors in transgenic mice. Science 237(4820):1324–1329PubMedGoogle Scholar
  116. Nitta T, Hofacre A et al (2009) Identification and mutational analysis of a Rej response element in Jaagsiekte sheep retrovirus RNA. J Virol 83(23):12499–12511PubMedGoogle Scholar
  117. Nobel TA, Neumann F et al (1969) Histological patterns of the metastases in pulmonary adenomatosis of sheep (jaagsiekte). J Comp Pathol 79(4):537–540PubMedGoogle Scholar
  118. O’Brien LE, Jou TS et al (2001) Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3(9):831–838PubMedGoogle Scholar
  119. O’Brien LE, Zegers MM et al (2002) Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 3(7):531–537PubMedGoogle Scholar
  120. O’Brien CA, Pollett A et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110PubMedGoogle Scholar
  121. Ortin A, Cousens C et al (2003) Characterization of enzootic nasal tumour virus of goats: complete sequence and tissue distribution. J Gen Virol 84(Pt 8):2245–2252PubMedGoogle Scholar
  122. Ortin A, Benito AA et al (2007) Bronchioloalveolar carcinoma not related to jaagsiekte sheep retrovirus in a goat. Vet Pathol 44(5):710–712PubMedGoogle Scholar
  123. Overdier DG, Porcella A et al (1994) The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14(4):2755–2766PubMedGoogle Scholar
  124. Palmarini M, Fan H (2001) Retrovirus-induced ovine pulmonary adenocarcinoma, an animal model for lung cancer. J Natl Cancer Inst 93(21):1603–1614PubMedGoogle Scholar
  125. Palmarini M, Fan H (2003) Molecular biology of jaagsiekte sheep retrovirus. Curr Top Microbiol Immunol 275:81–115PubMedGoogle Scholar
  126. Palmarini M, Dewar P et al (1995) Epithelial tumour cells in the lungs of sheep with pulmonary adenomatosis are major sites of replication for Jaagsiekte retrovirus. J Gen Virol 76(Pt 11):2731–2737PubMedGoogle Scholar
  127. Palmarini M, Fan H et al (1997) Sheep pulmonary adenomatosis: a unique model of retrovirus-associated lung cancer. Trends Microbiol 5(12):478–483PubMedGoogle Scholar
  128. Palmarini M, Sharp JM et al (1999) Jaagsiekte sheep retrovirus is necessary and sufficient to induce a contagious lung cancer in sheep. J Virol 73(8):6964–6972PubMedGoogle Scholar
  129. Palmarini M, Datta S et al (2000a) The long terminal repeat of Jaagsiekte sheep retrovirus is preferentially active in differentiated epithelial cells of the lungs. J Virol 74(13):5776–5787PubMedGoogle Scholar
  130. Palmarini M, Hallwirth C et al (2000b) Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous jaagsiekte sheep retrovirus. J Virol 74(17):8065–8076PubMedGoogle Scholar
  131. Palmarini M, Gray CA et al (2001a) Expression of endogenous betaretroviruses in the ovine uterus: effects of neonatal age, estrous cycle, pregnancy, and progesterone. J Virol 75(23):11319–11327PubMedGoogle Scholar
  132. Palmarini M, Maeda N et al (2001b) A phosphatidylinositol 3-kinase docking site in the cytoplasmic tail of the Jaagsiekte sheep retrovirus transmembrane protein is essential for envelope-induced transformation of NIH 3T3 cells. J Virol 75(22):11002–11009PubMedGoogle Scholar
  133. Palmarini M, Murgia C et al (2002) Spliced and prematurely polyadenylated Jaagsiekte sheep retrovirus-specific RNAs from infected or transfected cells. Virology 294(1):180–188PubMedGoogle Scholar
  134. Palmarini M, Mura M et al (2004) Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol 85(Pt 1):1–13PubMedGoogle Scholar
  135. Payne AL, Verwoerd DW (1984) A scanning and transmission electron microscopy study of jaagsiekte lesions. Onderstepoort J Vet Res 51(1):1–13PubMedGoogle Scholar
  136. Pearson G, Robinson F et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183PubMedGoogle Scholar
  137. Perk K, Hod I (1982) Sheep lung carcinoma: an endemic analogue of a sporadic human neoplasm. J Natl Cancer Inst 69(4):747–749PubMedGoogle Scholar
  138. Perk K, Michalides R et al (1974) Biochemical and morphologic evidence for the presence of an RNA tumor virus in pulmonary carcinoma of sheep (Jaagsiekte). J Natl Cancer Inst 53(1):131–135PubMedGoogle Scholar
  139. Perron H, Garson JA et al (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA 94(14):7583–7588PubMedGoogle Scholar
  140. Platt JA, Kraipowich N et al (2002) Alveolar type II cells expressing jaagsiekte sheep retrovirus capsid protein and surfactant proteins are the predominant neoplastic cell type in ovine pulmonary adenocarcinoma. Vet Pathol 39(3):341–352PubMedGoogle Scholar
  141. Rai SK, DeMartini JC et al (2000) Retrovirus vectors bearing jaagsiekte sheep retrovirus Env transduce human cells by using a new receptor localized to chromosome 3p21.3. J Virol 74(10):4698–4704PubMedGoogle Scholar
  142. Rai SK, Duh FM et al (2001) Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc Natl Acad Sci USA 98(8):4443–4448PubMedGoogle Scholar
  143. Rooney SA, Young SL et al (1994) Molecular and cellular processing of lung surfactant. FASEB J 8(12):957–967PubMedGoogle Scholar
  144. Rosadio RH, Lairmore MD et al (1988a) Retrovirus-associated ovine pulmonary carcinoma (sheep pulmonary adenomatosis) and lymphoid interstitial pneumonia. I. Lesion development and age susceptibility. Vet Pathol 25(6):475–483PubMedGoogle Scholar
  145. Rosadio RH, Sharp JM et al (1988b) Lesions and retroviruses associated with naturally occurring ovine pulmonary carcinoma (sheep pulmonary adenomatosis). Vet Pathol 25(1):58–66PubMedGoogle Scholar
  146. Rosati S, Pittau M et al (2000) An accessory open reading frame (orf-x) of jaagsiekte sheep retrovirus is conserved between different virus isolates. Virus Res 66(1):109–116PubMedGoogle Scholar
  147. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13(4):397–411PubMedGoogle Scholar
  148. Rupp RA, Kruse U et al (1990) Chicken NFI/TGGCA proteins are encoded by at least three independent genes: NFI-A, NFI-B and NFI-C with homologues in mammalian genomes. Nucleic Acids Res 18(9):2607–2616PubMedGoogle Scholar
  149. Sakai K, Kweon MN et al (1992) Effects of pulmonary surfactant and surfactant protein A on phagocytosis of fractionated alveolar macrophages: relationship to starvation. Cell Mol Biol 38(2):123–130PubMedGoogle Scholar
  150. Salvatori D, Gonzalez L et al (2004) Successful induction of ovine pulmonary adenocarcinoma in lambs of different ages and detection of viraemia during the preclinical period. J Gen Virol 85(Pt 11):3319–3324PubMedGoogle Scholar
  151. Sawaya PL, Stripp BR et al (1993) The lung-specific CC10 gene is regulated by transcription factors from the AP-1, octamer, and hepatocyte nuclear factor 3 families. Mol Cell Biol 13(7):3860–3871PubMedGoogle Scholar
  152. Schmitz G, Muller G (1991) Structure and function of lamellar bodies, lipid-protein complexes involved in storage and secretion of cellular lipids. J Lipid Res 32(10):1539–1570PubMedGoogle Scholar
  153. Sharma DN, Rajya B, Dwivedi JN (1975a) Experimental transmission of Jaagsiekte and Maedi in sheep and goats. Indian J Anim Sci 45:275–281Google Scholar
  154. Sharma DN, Rajya B, Dwivedi JN (1975b) Metastasizing pulmonary adenomatosis (Jaagziekte) in sheep and goats. Patho-anatomical studies. Indian J Anim Sci 45:363–370Google Scholar
  155. Sharp JM, DeMartini JC (2003) Natural history of JSRV in sheep. Curr Top Microbiol Immunol 275:55–79PubMedGoogle Scholar
  156. Sharp JM, Herring AJ (1983) Sheep pulmonary adenomatosis: demonstration of a protein which cross-reacts with the major core proteins of Mason-Pfizer monkey virus and mouse mammary tumour virus. J Gen Virol 64(Pt 10):2323–2327PubMedGoogle Scholar
  157. Sharp JM, Angus KW et al (1983) Rapid transmission of sheep pulmonary adenomatosis (jaagsiekte) in young lambs. Brief report. Arch Virol 78(1–2):89–95PubMedGoogle Scholar
  158. Sharp JM, Angus KW et al (1986) Experimental transmission of sheep pulmonary adenomatosis to a goat. Vet Rec 119(10):245PubMedGoogle Scholar
  159. Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29(1):161–169PubMedGoogle Scholar
  160. Shirlaw J (1959) Studies on Jaagsiekte in Kenya. Bull Epizoot Dis Afr 7:287–302Google Scholar
  161. Singh SK, Clarke ID et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  162. Snyder SP, DeMartini JC et al (1983) Coexistence of pulmonary adenomatosis and progressive pneumonia in sheep in the central sierra of Peru. Am J Vet Res 44(7):1334–1338PubMedGoogle Scholar
  163. Songyang Z, Shoelson SE et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72(5):767–778PubMedGoogle Scholar
  164. Spencer TE, Stagg AG et al (1999) Discovery and characterization of endometrial epithelial messenger ribonucleic acids using the ovine uterine gland knockout model. Endocrinology 140(9):4070–4080PubMedGoogle Scholar
  165. Spencer TE, Mura M et al (2003) Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses. J Virol 77(1):749–753PubMedGoogle Scholar
  166. Stephens L, Smrcka A et al (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77(1):83–93PubMedGoogle Scholar
  167. Stephens LR, Eguinoa A et al (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89(1):105–114PubMedGoogle Scholar
  168. Summers C, Neill W et al (2002) Systemic immune responses following infection with Jaagsiekte sheep retrovirus and in the terminal stages of ovine pulmonary adenocarcinoma. J Gen Virol 83(Pt 7):1753–1757PubMedGoogle Scholar
  169. Summers C, Norval M et al (2005) An influx of macrophages is the predominant local immune response in ovine pulmonary adenocarcinoma. Vet Immunol Immunopathol 106(3–4):285–294PubMedGoogle Scholar
  170. Tustin RC (1969) Ovine Jaagsiekte. J S Afr Vet Med Assoc 40:3–23Google Scholar
  171. Tustin RC, Williamson AL et al (1988) Experimental transmission of jaagsiekte (ovine pulmonary adenomatosis) to goats. Onderstepoort J Vet Res 55(1):27–32PubMedGoogle Scholar
  172. Van Hoeven NS, Miller AD (2005) Improved enzootic nasal tumor virus pseudotype packaging cell lines reveal virus entry requirements in addition to the primary receptor Hyal2. J Virol 79(1):87–94PubMedGoogle Scholar
  173. Varela M, Golder M et al (2008) A large animal model to evaluate the effects of Hsp90 inhibitors for the treatment of lung adenocarcinoma. Virology 371(1):206–215PubMedGoogle Scholar
  174. Verwoerd DW, de Villiers EM (1980) On the aetiology of Jaagsiekte. J S Afr Vet Assoc 51(2):71–74PubMedGoogle Scholar
  175. Verwoerd DW, De Villiers EM et al (1980) Aetiology of jaagsiekte: experimental transmission to lambs by means of cultured cells and cell homogenates. Onderstepoort J Vet Res 47(1):13–18PubMedGoogle Scholar
  176. Villarreal LP (1997) On viruses, sex, and motherhood. J Virol 71(2):859–865PubMedGoogle Scholar
  177. Wandera JG (1967) Pneumonia of sheep in Kenya. I. Bacterial and parasitic pneumonia. Bull Epizoot Dis Afr 15(3):245–258PubMedGoogle Scholar
  178. Wandera JG (1970) Clinical pulmonary adenomatosis of sheep produced experimentally. Br Vet J 126(4):185–193PubMedGoogle Scholar
  179. Wandera JG (1971) Sheep pulmonary adenomatosis (Jaagsiekte). Adv Vet Sci Comp Med 15:251–283PubMedGoogle Scholar
  180. Wang MH, Ronsin C et al (1994) Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science 266(5182):117–119PubMedGoogle Scholar
  181. Wang MH, Iwama A et al (1995) The murine stk gene product, a transmembrane protein tyrosine kinase, is a receptor for macrophage-stimulating protein. Proc Natl Acad Sci USA 92(9):3933–3937PubMedGoogle Scholar
  182. Wang MH, Wang D et al (2003) Oncogenic and invasive potentials of human macrophage-stimulating protein receptor, the RON receptor tyrosine kinase. Carcinogenesis 24(8):1291–1300PubMedGoogle Scholar
  183. Wang D, Shen Q et al (2004) Collaborative activities of macrophage-stimulating protein and transforming growth factor-beta1 in induction of epithelial to mesenchymal transition: roles of the RON receptor tyrosine kinase. Oncogene 23(9):1668–1680PubMedGoogle Scholar
  184. Wang J, Wang S et al (2006) Ozone induces oxidative stress in rat alveolar type II and type I-like cells. Free Radic Biol Med 40(11):1914–1928PubMedGoogle Scholar
  185. Wootton SK, Halbert CL et al (2005) Sheep retrovirus structural protein induces lung tumours. Nature 434(7035):904–907PubMedGoogle Scholar
  186. Wootton SK, Halbert CL et al (2006a) Envelope proteins of Jaagsiekte sheep retrovirus and enzootic nasal tumor virus induce similar bronchioalveolar tumors in lungs of mice. J Virol 80(18):9322–9325PubMedGoogle Scholar
  187. Wootton SK, Metzger MJ et al (2006b) Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV. Retrovirology 3:94PubMedGoogle Scholar
  188. York DF, Querat G (2003) A history of ovine pulmonary adenocarcinoma (jaagsiekte) and experiments leading to the deduction of the JSRV nucleotide sequence. Curr Top Microbiol Immunol 275:1–23PubMedGoogle Scholar
  189. York DF, Vigne R et al (1991) Isolation, identification, and partial cDNA cloning of genomic RNA of jaagsiekte retrovirus, the etiological agent of sheep pulmonary adenomatosis. J Virol 65(9):5061–5067PubMedGoogle Scholar
  190. York DF, Vigne R et al (1992) Nucleotide sequence of the jaagsiekte retrovirus, an exogenous and endogenous type D and B retrovirus of sheep and goats. J Virol 66(8):4930–4939PubMedGoogle Scholar
  191. Zabarovsky ER, Lerman MI et al (2002) Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene 21(45):6915–6935PubMedGoogle Scholar
  192. Zhang S, Balch C et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320PubMedGoogle Scholar
  193. Zsengeller ZK, Halbert C et al (1999) Keratinocyte growth factor stimulates transduction of the respiratory epithelium by retroviral vectors. Hum Gene Ther 10(3):341–353PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology and Biochemistry, Cancer Research InstituteUniversity of CaliforniaIrvineUSA

Personalised recommendations