Transplantation Immunobiology

Chapter

Abstract

Our immune system has evolved into an intricate system to protect us from invading microbes while maintaining its ability to recognize self. The very nature of its design limits the success of transplantation since the recipient recognizes the transplanted organ as foreign and mounts a robust response to target it. There are two arms of the immune system: innate (or natural) immunity and adaptive immunity. The innate immune system is evolutionarily older and does not require the recognition of specific antigens. Nonspecific recruitment of macrophages, neutrophils, natural killer cells, and the complement system provides a rapidly activated first line of defense when damage or infection is encountered. In contrast, the highly sophisticated adaptive immune system involves a more efficient recognition of specific pathogens and is able to generate immunological memory. Adaptive immunity is characterized by the involvement of T cells in cell-mediated immune response and B cells in the humoral response.

Keywords

Allorecognition Major histocompatibility complex T cells B cells Tolerance 

References

  1. 1.
    Snell GD. Methods for the study of histocompatibility genes. J Genet. 1948;49:87.PubMedCrossRefGoogle Scholar
  2. 2.
    Kreisel D, Krupnick AS, Gelman AE, et al. Non-hematopoietic allograft cells directly activate CD8+ T cells and trigger acute rejection: an alternative mechanism of allorecognition. Nat Med. 2002;8(3):233–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Sheldon S, Poulton K. HLA Typing and its influence on organ transplantation. Methods Mol Biol. 2006;333:157–74.PubMedGoogle Scholar
  4. 4.
    Sumitran-Holgersson S. Relevance of MICA and other non-HLA antibodies in clinical transplantation. Curr Opin Immunol. 2008;20(5):607–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Terasaki PI. Deduction of the fraction of immunologic and non-immunologic failure in cadaver donor transplants. Clin Transpl 2003:449–52.Google Scholar
  6. 6.
    Roopenian D, Choi EY, Brown A. The immunogenomics of minor histocompatibility antigens. Immunol Rev. 2002;190:86–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Derhaag JG, Duijvestijn AM, Damoiseaux JG, van Breda Vriesman PJ. Effects of antibody reactivity to major histocompatibility complex (MHC) and non-MHC alloantigens on graft endothelial cells in heart allograft rejection. Transplantation. 2000;69(9):1899–906.Google Scholar
  8. 8.
    Koulack J, McAlister VC, MacAulay MA, Bitter-Suermann H, MacDonald AS, Lee TD. Importance of minor histocompatibility antigens in the development of allograft arteriosclerosis. Clin Immunol Immunopathol. 1996;80(3 Pt 1):273–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang J, Jaramillo A, Liu W, et al. Chronic rejection of murine cardiac allografts discordant at the H13 minor histocompatibility antigen correlates with the generation of the H13-specific CD8+ cytotoxic T cells. Transplantation. 2003;76(1):84–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Goulmy E, Gratama JW, Blokland E, Zwaan FE, van Rood JJ. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature. 1983;302(5904):159–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Goulmy E, Schipper R, Pool J, et al. Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med. 1996;334(5):281–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Krishnan NS, Higgins RM, Lam FT, et al. HA-1 mismatch has significant effect in chronic allograft nephropathy in clinical renal transplantation. Transplant Proc. 2007;39(5):1439–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Heinold A, Opelz G, Scherer S, et al. Role of minor histocompatibility antigens in renal transplantation. Am J Transplant. 2008;8(1):95–102.PubMedCrossRefGoogle Scholar
  14. 14.
    Sumitran-Holgersson S, Wilczek HE, Holgersson J, Soderstrom K. Identification of the nonclassical HLA molecules, mica, as targets for humoral immunity associated with irreversible rejection of kidney allografts. Transplantation. 2002;74(2):268–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Mizutani K, Terasaki P, Rosen A, et al. Serial ten-year follow-up of HLA and MICA antibody production prior to kidney graft failure. Am J Transplant. 2005;5(9):2265–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Dragun D. Humoral responses directed against non-human leukocyte antigens in solid-organ transplantation. Transplantation. 2008;86(8):1019–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Magee CC. Transplantation across previously incompatible immunological barriers. Transpl Int. 2006;19(2):87–97.PubMedCrossRefGoogle Scholar
  18. 18.
    Gloor JM, Stegall MD. ABO incompatible kidney transplantation. Curr Opin Nephrol Hypertens. 2007;16(6):529–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Alegre ML, Najafian N. Costimulatory molecules as targets for the induction of transplantation tolerance. Curr Mol Med. 2006;6(8):843–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Li XC, Rothstein DM, Sayegh MH. Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev. 2009;229(1):271–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Boenisch O, Sayegh MH, Najafian N. Negative T-cell costimulatory pathways: their role in regulating alloimmune responses. Curr Opin Organ Transplant. 2008;13(4):373–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Rothstein DM, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev. 2003;196:85–108.PubMedCrossRefGoogle Scholar
  23. 23.
    Vincenti F, Luggen M. T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med. 2007;58:347–58.PubMedCrossRefGoogle Scholar
  24. 24.
    Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA. 1997;94(16):8789–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol. 1997;159(11):5187–91.PubMedGoogle Scholar
  26. 26.
    Yamada A, Kishimoto K, Dong VM, et al. CD28-independent costimulation of T cells in alloimmune responses. J Immunol. 2001;167(1):140–6.PubMedGoogle Scholar
  27. 27.
    Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995;181(5):1869–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Steiger J, Nickerson PW, Steurer W, Moscovitch-Lopatin M, Strom TB. IL-2 knockout recipient mice reject islet cell allografts. J Immunol. 1995;155(1):489–98.PubMedGoogle Scholar
  29. 29.
    Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100(3):550–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou P, Szot GL, Guo Z, et al. Role of STAT4 and STAT6 signaling in allograft rejection and CTLA4-Ig-mediated tolerance. J Immunol. 2000;165(10):5580–7.PubMedGoogle Scholar
  31. 31.
    Yuan X, Paez-Cortez J, Schmitt-Knosalla I, et al. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med. 2008;205(13):3133–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity. 2008;29(1):44–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet. 1997;350(9086):1193–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Vincenti F, Kirkman R, Light S, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998;338(3):161–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Hancock WW, Gao W, Faia KL, Csizmadia V. Chemokines and their receptors in allograft rejection. Curr Opin Immunol. 2000;12(5):511–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Fischereder M, Schroppel B. The role of chemokines in acute renal allograft rejection and chronic allograft injury. Front Biosci. 2009;14:1807–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Rocha PN, Plumb TJ, Crowley SD, Coffman TM. Effector mechanisms in transplant rejection. Immunol Rev. 2003;196:51–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Bickerstaff AA, Wang JJ, Pelletier RP, Orosz CG. Murine renal allografts: spontaneous acceptance is associated with regulated T cell-mediated immunity. J Immunol. 2001;167(9):4821–7.PubMedGoogle Scholar
  39. 39.
    Orosz CG, Wakely E, Sedmak DD, Bergese SD, VanBuskirk AM. Prolonged murine cardiac allograft acceptance: characteristics of persistent active alloimmunity after treatment with gallium nitrate versus anti-CD4 monoclonal antibody. Transplantation. 1997;63(8):1109–17.PubMedCrossRefGoogle Scholar
  40. 40.
    VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest. 2000;106(1):145–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Strom TB, Tilney NL, Carpenter CB, Busch GJ. Identity and cytotoxic capacity of cells infiltrating renal allografts. N Engl J Med. 1975;292(24):1257–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Krupnick AS, Kreisel D, Popma SH, et al. Mechanism of T cell-mediated endothelial apoptosis. Transplantation. 2002;74(6):871–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Wever PC, Boonstra JG, Laterveer JC, et al. Mechanisms of lymphocyte-mediated cytotoxicity in acute renal allograft rejection. Transplantation. 1998;66(2):259–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Kown MH, Van der Steenhoven T, Blankenberg FG, et al. Zinc-mediated reduction of apoptosis in cardiac allografts. Circulation. 2000;102(19 Suppl 3):III228–32.PubMedGoogle Scholar
  45. 45.
    Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9(7):491–502.PubMedCrossRefGoogle Scholar
  46. 46.
    McHeyzer-Williams MG. B cells as effectors. Curr Opin Immunol. 2003;15(3):354–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med. 2002;8(6):582–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Brunkow ME. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27:68–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Bennett CL. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.PubMedCrossRefGoogle Scholar
  51. 51.
    Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:239–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Grossman WJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21:589–601.PubMedCrossRefGoogle Scholar
  53. 53.
    Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+ CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174:1783–6.PubMedGoogle Scholar
  54. 54.
    Nikolova M, Lelievre J-D, Carriere M, Bensussan A, Levy Y. Regulatory T cells modulate differentially the maturation and apoptosis of human CD8-T cell subsets. Blood 2009:blood-2008–04–151407.Google Scholar
  55. 55.
    Hara M. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 2001;166:3789–96.PubMedGoogle Scholar
  56. 56.
    Maloy KJ. CD4+ CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med. 2003;197:111–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-b1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26:579–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Taylor P, Noelle RJ, Blazar BR. CD4+ CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001;193:1311–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Sanchez-Fueyo A, Weber M, Domenig C, Strom T, Zheng X. Tracking immunoregulatory mechanisms during allograft tolerance. J Immunol. 2002;168:2274–81.PubMedGoogle Scholar
  60. 60.
    Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 2003;3(3):199–210.PubMedCrossRefGoogle Scholar
  61. 61.
    Martinez-Llordella M, Puig-Pey I, Orlando G, et al. Multiparameter immune profiling of ­operational tolerance in liver transplantation. Am J Transplant. 2007;7(2):309–19.PubMedCrossRefGoogle Scholar
  62. 62.
    Pons JA, Revilla-Nuin B, Baroja-Mazo A, et al. FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation. 2008;86(10):1370–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Salama AD, Najafian N, Clarkson MR, Harmon WE, Sayegh MH. Regulatory CD25+ T cells in human kidney transplant recipients. J Am Soc Nephrol. 2003;14:1643–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Akl A, Jones ND, Rogers N, et al. An investigation to assess the potential of CD25highCD4+ T cells to regulate responses to donor alloantigens in clinically stable renal transplant recipients. Transpl Int. 2008;21(1):65–73.PubMedGoogle Scholar
  65. 65.
    Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353(22):2342–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Roncarolo M-G, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol. 2007;7(8):585–98.PubMedCrossRefGoogle Scholar
  67. 67.
    Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev. 2008;223(1):371–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Renal Division, Transplantation Research CenterBrigham and Women’s HospitalBostonUSA

Personalised recommendations