A Strategy for Rapid and Accurate (p.p.m.) Measurement of Lattice Parameters of Single Crystals by Bond’s Method

  • R. L. Barns


All published accounts of the use of Bond’s method for lattice parameter measurements have used step-scanning (at equal angle increments) of the diffraction peaks, followed by graphical or computer analysis of the data to locate the peak positions. It has been found that the peak angles can be determined with little loss in accuracy or precision by manually setting the crystal angle to give a counting rate (observed on a rate-meter) equal to l/2 the peak rate and defining the peak angle as the average of the angles on the two sides of the peak. Because of the asymmetry of the spectral line, defining the peak in this manner results in a shift of the peak angle from that determined by the mid-chord peak method. This shift can be compensated by determining an effective value of the wavelength based on a silicon standard. Using the method described, a lattice parameter measurement, including mounting and orienting the sample, taking the data and computing the result using a time-sharing computer terminal, can be made in less than 20 mins.


Effective Wavelength Peak Angle Lattice Parameter Measurement Beam Tilt Atomic Energy Comm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Parrish, “Results of the I.U.Cr. Precision Lattice Parameter Project”, Acta Cryst. 13, 838–850 (1960).CrossRefGoogle Scholar
  2. 2.
    L. F. Vassamillet and H. W. King, “Precision X-Ray Dif-fractometry Using Powder Specimens”, in W. M. Mueller and M. Fay (Eds.) Advances in X-Ray Analysis, Vol. 6 p. 142–157, Plenum Press (1963).CrossRefGoogle Scholar
  3. 3.
    G. Boom, “Accurate Lattice Parameters and the LPC Method”, Thesis, University of Groningen (1966).Google Scholar
  4. 4.
    W. L. Bond, “Precision Lattice Constant Determination”, Acta Cryst. 13, p. 814–818 (1960).CrossRefGoogle Scholar
  5. 5.
    K. E. Beu, F. J. Musil and D. R. Whitney, “Precise and Accurate Lattice Parameters by Film Powder Methods. I. The Likelihood Ratio Method”, Acta Cryst. 15, p. 1292–1301 (1962).CrossRefGoogle Scholar
  6. 6.
    K. E. Beu, “Further Developments in a Likelihood Ratio Method for the Precise and Accurate Determination of Lattice Parameters”, Acta Cryst. 22, p. 932–933 (1967).CrossRefGoogle Scholar
  7. 7.
    R. L. Barns, “A Survey of Precision Lattice Parameter Measurements as a Tool for the Characterization of Single-Crystal Materials”,Mat. Res. Bull. 2, p. 273–282 (1967).CrossRefGoogle Scholar
  8. 8.
    J. A. Bearden, “X-Ray Wavelengths”, p. 10, U.S. Atomic Energy Coram. (1964).Google Scholar
  9. 9.
    R. D. Deslattes, “Optical and X-Ray Interferometry of a Silicon Lattice Spacing”, App. Phys. Lett. 15, p. 386–388 (1969).CrossRefGoogle Scholar
  10. 10.
    T. W. Baker, J. D. George, B. A. Bellamy and R. Causer, “Fully Automated High Precision X-Ray Diffraction”, in J. B. Newkirk, G. R. Mallett and H. G. Pfeiffer (Eds.), Advances in X-Ray Analysis, Vol. 11, p. 359–375 (1968).CrossRefGoogle Scholar
  11. 11.
    V. I. Lisiovan and R. R. Dikovskaya, “Local Precision Determination of Lattice Constants of a Single Crystal”, Instruments and Exper. Tech. (Eng. transi.), 4, p. 992–994 (1969).Google Scholar
  12. 12.
    I. Henins and J. A. Bearden, “Silicon-Crystal Determination of the Absolute Scale of X-Ray Wavelengths”, Phys. Rev. 135, p. A890–A898 (1964).CrossRefGoogle Scholar
  13. 13.
    R. D. Deslattes, H. S. Peiser, J. A. Bearden and J. S. Thomsen, “Potential Appl. of the X-Ray/Density Method for Comparison of Atomic-Weight Values”, Metrologia, 2, p. 104–111 (1966).CrossRefGoogle Scholar
  14. 14.
    A. Segmuller, “Automated Lattice Parameter Determination on Single Crystals”, in B. L. Henke, J. B. Newkirk and G. R. Mallett (Eds.), Advances in X-Ray Analysis, Vol. 13, p. 455–467 (1970).CrossRefGoogle Scholar
  15. 15.
    J. S. Thomsen and F. Y. Yap, “Effect of Statistical Counting Errors on Wavelength Criteria for X-Ray Spectra”, J. of Research, NBS-A, 72A, p. 187–205 (1968).CrossRefGoogle Scholar
  16. 16.
    J. Backovsky, “On the Most Accurate Measurements of the Wavelengths of X-Ray Spectral Lines”, Czech. J. Phys. 15, p. 752–759 (1965).CrossRefGoogle Scholar
  17. 17.
    G. Donnay and J. D. H. Donnay, “The Symmetry Change in the High-Temperature Alkali Feldspar Series”, Am. J. Science, Bowen Vol. (Pt. 1), p. 115–132 (1952).Google Scholar
  18. 18.
    J. Burke and M. V. Tomkeieff, “Specimen and Beam Tilt Errors in Bond’s Method of Lattice Parameter Determination”, Acta Cryst., A24, p. 683–685 (1968).Google Scholar
  19. 19.
    J. Burke and M. V. Tomkeieff, “Errors in the Bond Method of Lattice Parameter Determinations — Further Considerations”, J. Appl. Cryst. 2, p. 247–248 (1969).CrossRefGoogle Scholar
  20. 20.
    E. E. Gruber and R. E. Black, “Analysis of the Axial Misalignment Error in Precision Lattice Parameter Measurement by the Bond Technique”, J. Appl. Cryst. 3, p. 354–357 (1970).CrossRefGoogle Scholar
  21. 21.
    M. A. G. Halliwell, “Measurement of Specimen Tilt and Beam Tilt in the Bond Method”, J. Appl. Cryst. 3, p. 418–419 (1970).CrossRefGoogle Scholar
  22. 22.
    J. Mandel, “The Statistical Analysis of Experimental Data”, p. 111, Interscience Publ., John Wiley and Sons, New York, 1964.Google Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • R. L. Barns
    • 1
  1. 1.Bell Telephone Laboratories, IncorporatedMurray HillUSA

Personalised recommendations