Skip to main content

Ion Implantation — A Promising Technique for the Production of New Superconducting Materials

  • Chapter
Advances in Superconductivity

Part of the book series: NATO Advanced Science Institutes Series ((ASIB))

  • 304 Accesses

Abstract

Since the discovery of superconductivity the research of many experimentalists was motivated by the desire to raise the superconducting transition temperature, Tc, to high enough values that the widespread technological potential of superconductivity could be used in an economically feasable manner. This was the reason why a large variety of newly developed techniques for materials preparation were immediately applied in superconductivity. In this manner methods like rapid quenching from the vapor or the liquid phase, sputtering, chemical vapor deposition and high pressure techniques resulted in a high variety of interesting superconducting phases. During the midsixties the semiconductor industries applied very successfully ion implantation for the doping of semiconducting materials. For this reason the group with Prof. Buckel at the university in Karlsruhe started to introduce this technique in superconductivity. Although they originally intended to use ion implantation only for the well-defined doping of superconductors with magnetic impurities, the applicability of this technique to the production of new materials became quite obvious. Hence up to now mainly three experimental groups situated in the nuclear research centers in Karlsruhe and Jülich as well as in Orsay have joined the work on ion implantation in superconductors. The interesting results achieved by these groups have been reviewed recently by several authors.1−5 For this reason in the following I do not intend to give a complete overview of this field. Instead I want to restrict myself to a few selected examples demonstrating the widespread applicability of the ion implantation technique in superconductivity. The discussion will not only include interesting superconducting properties but also new metallurgical aspects as well as new insights in the implantation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Stritzker, J. Nucl. Mat. 72: 256 (1978).

    Article  ADS  Google Scholar 

  2. O. Meyer, Superconductivity, in: “Treatise on Materials Science and Technology,” J.K. Hirvonen, ed., p. 415, Academic Press, New York (1980).

    Google Scholar 

  3. H. Bernas and P. Nedellec, Nucl. Instr. and Meth. 183: 845 (1981).

    Article  Google Scholar 

  4. O. Meyer, to be published in Proc. EPS-Meeting, Istanbul, Sept. 1981.

    Google Scholar 

  5. B. Stritzker, Metastable Alloys, in: “Surface Modifications and Alloying”, Nato Institute, to be published.

    Google Scholar 

  6. B. Stritzker, Z. Physik 268: 261 (1974).

    Article  ADS  Google Scholar 

  7. G. Bergmann, Physics Rep. 276: 161 (1976).

    Google Scholar 

  8. W. Buckel, Liquid-like Amorphous Thin Films, in: “Diffraction Studies on Non-Crystalline Substances”, p. 713, Publishing House of the Hungarian Academy of Sciences, 1980.

    Google Scholar 

  9. T.H. Geballe and J.M. Rowell, Thin Solid Films 91: 33 (1982).

    Article  ADS  Google Scholar 

  10. H.J. Güntherodt, P. Oelhafen, R. Lapka, et al., Inst. Phys. Conf. Ser. 55: 619 (1981).

    Google Scholar 

  11. W.L. Johnson, Superconductivity of Strongly Disordered and Glassy Materials, in: “Superconductivity in d- and f-Band Metals 1982”, W. Buckel and W. Weber, eds., Kernforschungszentrum, Karlsruhe (1982), p. 341.

    Google Scholar 

  12. B. Stritzker, Superconducting Effects in Rapidly Quenched Materials Formed by Ion and laser Bombardment, in: “Laser and Electron-Beam Interactions with Solids,” B.R. Appleton and G.K. Celler, eds., Elsevier Science. Publishing Company, New York (1982), p. 363.

    Google Scholar 

  13. W. Buckel and R. Hilsch, Z. Physik 138: 109 (1954).

    Article  ADS  Google Scholar 

  14. P. Duwez, R.H. Willens and W. Klement, J. App1. Phys. 31: 1136 (1960).

    Article  Google Scholar 

  15. B.R. Appleton and G.K. Celler, eds.,“Laser and Electron-Beam Interactions with Solids”, Elsevier Science Publishing Company, New York (1982).

    Google Scholar 

  16. V.N. Gridnew, I.Ya. Dekhtyar, L.I. Ivanov et al., JETP Lett. 18: 154 (1973).

    ADS  Google Scholar 

  17. W. Ostwald, Z. Physik. Chem. 22: 289 (1897).

    Google Scholar 

  18. W. Buckel, Z. Physik 238: 136 (1954).

    Google Scholar 

  19. A. Defrain, J. Chimie Physique 74: 851 (1977).

    Google Scholar 

  20. U. Görlach, M. Hitzfeld, P. Ziemann and W. Buckel, Z. Physik B 47: 227 (1982).

    Article  ADS  Google Scholar 

  21. G. Heim, W. Bauriedl and W. Buckel, J. Nucl. Mat. 72: 263 (1978).

    Article  ADS  Google Scholar 

  22. A. Hofmann, P. Ziemann and W. Buckel, Nucl. Instr. Meth. 183: 943 (1981).

    Article  Google Scholar 

  23. A. Comberg, S. Ewert and W. Wühl, Z. Physik B20: 165 (1975).

    ADS  Google Scholar 

  24. B. Stritzker and S. Ewert (1978), to be published.

    Google Scholar 

  25. J. Klein, A. Leyer, J. Chaumont and H. Bernas (1976), unpublished.

    Google Scholar 

  26. B. Stritzker and H. Wühl, Z. Physik 243:361 (1971) and Z. Physik B24: 367 (1976).

    Google Scholar 

  27. J.D. Meyer, J. Physique 41: 68–762 (1980).

    Google Scholar 

  28. J.D. Meyer, F. Ochmann and B. Stritzker, Solid State Comm. 39: 419 (1981).

    Article  ADS  Google Scholar 

  29. H.L. Luo and W. Klement, J. Chem. Phys. 36: 1870 (1962).

    Article  ADS  Google Scholar 

  30. C.C. Tsuei and L.R. Newkirk, Phys. Rev. 183: 619 (1969).

    Article  ADS  Google Scholar 

  31. G. Krauss, W. H.-G. Müller, F. Baumann and W. Buckel, J. Less-Common Metals 43: 13 (1975).

    Article  Google Scholar 

  32. J.D. Meyer and B. Stritzker, Nucl. Instr. Meth. 183: 965 (1981).

    Article  Google Scholar 

  33. B. Stritzker, C.W. White, B.R. Appleton, and S.T. Sekula (1980), to be published.

    Google Scholar 

  34. B. Stritzker, Phys. Rev. Lett. 42: 1769 (1979) and Inst. Phys. Conf. Ser. 55: 529 (1980).

    Article  ADS  Google Scholar 

  35. D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou and L.L. Boyer, Phys. Rev. B17: 141 (1978).

    ADS  Google Scholar 

  36. J.D. Meyer and B. Stritzker, Phys. Rev. Lett. 48: 502 (1982).

    Article  ADS  Google Scholar 

  37. G.Linker and O. Meyer, Solid State Comm. 20: 695 (1976).

    Article  ADS  Google Scholar 

  38. G. Linker, J. Nucl. Mat. 72: 275 (1978).

    Article  ADS  Google Scholar 

  39. G. Linker, Rad. Effects 47: 225 (1980), and ref. II, p. 367.

    Article  Google Scholar 

  40. A. ul. Hag and D. Meyer, to be published, J. Low. Temp. Phys.

    Google Scholar 

  41. J. Geerk and K.-G. Langguth, Solid State Comm. 23: 83 (1977).

    Article  ADS  Google Scholar 

  42. J.K. Hulm and R.D. Blaugher, Transition-Metal Superconductors, in: “Superconductivity in d- and f-Band Metals”, D.H.Douglass ed., AIP Conference Proceedings, New York (1972).

    Google Scholar 

  43. J.M. Soeder and B. Stritzker, J. Nucl. Mat. 72: 270 (1978).

    Article  ADS  Google Scholar 

  44. J.M. Soeder, B. Stritzker, J. Bolz, J.C. Glass and F. Pobell, J. Low Temp. Phys. 33: 9 (1978).

    Article  ADS  Google Scholar 

  45. J. Geerk, Solid State Comm. 33: 761 (1980).

    Article  ADS  Google Scholar 

  46. M.T. Clapp and R.M. Rose, J. App. Phys. 51: 540 (1980).

    Article  ADS  Google Scholar 

  47. B.R. Appleton, C.W. White, B. Stritzker, O. Meyer, J.R. Gavaler, A.I. Braginski, and M. Ashkin in: Laser and Electron Beam Processing of Materials, White and Peercy eds. ( Academic Press, New York 1980 ), p. 714.

    Chapter  Google Scholar 

  48. O. Meyer, J.R. Thompson, B.R. Appleton, C.W. White, and S.T. Sekula, to be published.

    Google Scholar 

  49. B. Stritzker, B.R. Appleton, C.W. White, and S.S. Lav, Solid State Comm. 41: 321 (1982).

    Article  ADS  Google Scholar 

  50. B. Pannetier, T.H. Geballe, R.H. Hammond, and J.F. Gibbons, Physica 107B 471 (1981).

    Article  Google Scholar 

  51. G. Linker and J. Geerk, to be published.

    Google Scholar 

  52. C.B. Satterthwaite and I.L. Toepke, Phys. Rev. Lett. 25: 741 (1970).

    Article  ADS  Google Scholar 

  53. T. Skoskiewicz, Phys. Status Solididi (a) 11: K123 (1972).

    Article  ADS  Google Scholar 

  54. B. Stritzker and W. Buckel, Z. Physik 257: 1 (1972).

    Article  ADS  Google Scholar 

  55. B. Stritzker, Z. Physik 268: 261 (1974).

    Article  ADS  Google Scholar 

  56. B.W. Roberts, J. Physical and Chemical Reference Data 5: 581 (1976) and NBS Technical Note 983.

    Article  ADS  Google Scholar 

  57. Review papers with additional references: B. Stritzker and H. Wühl in: Topics in applied Physics, Vol. 29, Hydrogen in Metals II, G. Alefeld, and J. Völkl, eds., Springer-Verlag, Berlin (1978) p. 243.

    Google Scholar 

  58. D.G. Westlake, C.B. Satterthwaite and J.H. Weaver, Physics Today 31: 32 (1978).

    Article  Google Scholar 

  59. W. Buckel, Z. Phys. Chem. 116: 135 (1979).

    Google Scholar 

  60. B. Stritzker, to be published in Proc. Int. Symp. on the Electronic Structure and Properties of Hydrogen in Metals, Richmond, Virginia 1982.

    Google Scholar 

  61. M. Gupta, to be published in Proc. Int. Symp. on the electronic Structure and Properties of Hydrogen Metals, Richmond, Virginia 1982.

    Google Scholar 

  62. J.J. Rush, D. Richter and R. Hempelmann, to be published.

    Google Scholar 

  63. A. Leiberich, W. Scholz, W.J. Standish and C.G. Homan, Phys. Lett. 87A: 57 (1981).

    Article  Google Scholar 

  64. A.F. Rex, J. Ruvalds and B.S. Deaver, to be published in Proc. Int. Symp. on the Electronic Structure of Hydrogen in Metals, Virginia 1982.

    Google Scholar 

  65. R.W. Standley, and C.B. Satterthwaite, to be published in Proc. Int. Symp. on the Electronic Structure and Properties of Hydrogen in Metals, Virginia 1982.

    Google Scholar 

  66. V.E. Antonov, I.T. Belash, E.G. Ponyatovskii and V.I. Rashupkin, JETP Lett. 31: 422 (1980).

    ADS  Google Scholar 

  67. J.D. Meyer and B. Stritzker, Nucl. Instr. and Meth. 182 /183: 933 (1981).

    Article  ADS  Google Scholar 

  68. A. Traverse, H. Bernas and J. Chaumont, Solid State Comm. 40: 725 (1981).

    Article  ADS  Google Scholar 

  69. W. Däumer, K. Lüders, Z. Szücs and H. Weber, J. Less Common Metals 78: 91 (1981).

    Article  Google Scholar 

  70. H. Bernas and P. Nedellec, Nucl. Instr. and Methods 182/183: 845 (1981) and references therein.

    Article  ADS  Google Scholar 

  71. P. Plein and S. Ewert, to be published.

    Google Scholar 

  72. R. Khoda-Bakhsh and D.K. Ross, J. Phys. F. 12: 15 (1982).

    Article  ADS  Google Scholar 

  73. R. Hempelmann, D. Richter and B. Stritzker, J. Phys. F, 12: 79 (1982).

    Article  ADS  Google Scholar 

  74. A.M. Lamoise, J. Chaumont, F. Meunier and H. Bernas, J. Phys. Lett. (Paris) 36: L 271 and L 305 (1975).

    Article  Google Scholar 

  75. S.T. Sekula and J.R. Thompson, Nucl. Instr. Meth. 182 /183: 937 (1981).

    Article  Google Scholar 

  76. F. Ochmann and B. Stritzker, to be published in Proc. IBMM 82, Grenoble.

    Google Scholar 

  77. F. Ochmann, J.D. Meyer and B. Stritzker, Physica 107B: 655 (1981).

    Google Scholar 

  78. B.W. Nedrud and D.M. Ginsberg, Physica 108B: 1175 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Stritzker, B. (1983). Ion Implantation — A Promising Technique for the Production of New Superconducting Materials. In: Deaver, B., Ruvalds, J. (eds) Advances in Superconductivity. NATO Advanced Science Institutes Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9954-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9954-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9956-8

  • Online ISBN: 978-1-4613-9954-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics