Environmental Requirements for Anaerobic Digestion of Biomass

  • R. E. Speece


The anaerobic digestion process is experiencing renewed interest worldwide. Findings indicate that methanogenic bacteria have catalyzed a revolution in our understanding of procaryote diversity. A host of publications has emerged on this topic. Pure culture techniques have improved, allowing further elucidation of reactions and pathways. Agricultural and environmental engineers have demonstrated renewed interest in the anaerobic digestion process in attempts to address waste treatment management needs and provide supplemental energy supplies, or both. Energy corporations are evaluating anaerobic digestion as a possible source of alternative energy supplies from biomass and other renewable sources. Research in each aspect and overall interest in anaerobic digestion has never been greater.

This review summarizes the literature through 1982 on the microbiology of methanogens, their reactions, characteristics, and pathways. Historical information on nutrient requirements of both the methanogens and fermentation bacteria is compiled.

Particular emphasis is made on the recent discovery of nickel as an essential trace metal requirement for methanogens. Other trace metals such as selenium and tungsten have been discovered. Iron appears to be required in rather high concentrations.

Sulfur requirements for anaerobic digestion are not widely documented, but sulfur appears to be required in concentrations much higher than previously thought. The complex chemistry in anaerobic digestion makes it difficult to clearly identify the requirement for sulfur and trace metals.

Recent investigations of the toxicity response of methanogens has demonstrated they are much less sensitive than previously considered. Acclimation to a wide variety of toxicants has been demonstrated. In addition, toxicity is commonly reversible at the toxicant concentrations commonly observed in the environment.

The economic burden of alkalinity supplementation costs for anaerobic digestion of some types of biomass and industrial wastewaters is so great that a separate section is devoted to this matter. Sources, requirements, and conservation of alkalinity are addressed.

Efforts to model the anaerobic digestion process are reviewed. A number of general and specific models are available. Some models assume volatile acids utilization is rate limiting, while others assume lipids or cellulose degradation to be rate limiting.

The review also considers various design prerequisites. Process configuration, temperature, and type of feedstock are discussed. Some of the industrial wastewaters successfully treated by anaerobic digestion are summarized. Finally, treatability screening procedures and scale-up factors affecting performance are summarized.


Chemical Oxygen Demand Sewage Sludge Activate Sludge Anaerobic Digestion Methane Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. E. Balch et al., “Methanogens: Re-evaluation of a unique biological group,” Microbiol. Rev., 43 260–296 (1979).Google Scholar
  2. 2.
    R. A. Mah and M. R. Smith, “The methanogenic bacteria,” Chap. 76 in The Prokaryotes edited by Starr et al. Springer-Verlag, 948-977 (1981).Google Scholar
  3. 3.
    M. P. Bryant, “Microbial methane production-theoretical aspects,” J. Animal Science, 48, 193–201 (1979).Google Scholar
  4. 4.
    R. A. Prins, “Methanogenesis in the gastrointestinal tracts of ruminants and man,” Antonie van Leeuwenhoek, 45, 339–345 (1979).Google Scholar
  5. 5.
    P.R. Zimmerman et al., “Termites, a potentially large source of atmospheric methane, carbone dioxide, and molecular hydrogen,” Science, 218, 563–565 (1982).Google Scholar
  6. 6.
    J.G. Zeikus and J. G. Ward, “Methane formation in living trees: A microbial origin,” Science 184, 1181–1183 (1974).Google Scholar
  7. 7.
    J.G. Zeikus, “The biology of methanogenic bacteria,” Bact. Rev. 41, 514–541 (1977).Google Scholar
  8. 8.
    M. Salonen-Salkinoja et al., “Biodegradation of recalcitrant organochlorine compounds in fixed film reactors,” IAWPR specialized seminar—Anaerobic treatment of wastewater in fixed film reactors. Copenhagen, Denmark, 149-162 (1982).Google Scholar
  9. 9.
    R.E. Speece, “Fundamentals of the anaerobic digestion of municipal sludge and industrial wastewaters,” Seminar on Anaerobic Wastewater Treatment and Energy Recovery by Duncan, Lagnese and Assoc. Inc., Pittsburgh, PA (1981).Google Scholar
  10. 10.
    M.S. Switzenbaum and W. J. Jewell, “Anaerobic attached film expanded bed reactor treatment,” J. Wat. Poll. Control Fed., 52, 1953–1965 (1980).Google Scholar
  11. 11.
    R.H. Clark and R. E. Speece, “The pH tolerance of anaerobic digestion,” Proc. 5th Int’l. Conf. on Water Poll. Res., 17, (1970).Google Scholar
  12. 12.
    A. J. B. Zehnder, “Ecology of methane formation,” Chap. 13 in Microbiology of Water Pollution by Mitchell, Wiley Interscience Pub., 349-376 (1978).Google Scholar
  13. 13.
    J.G. Morris, “Oxygen and the obligate anaerobic,” J. Appl. Bacteriol., 40, 229 (1976).Google Scholar
  14. 14.
    Robert A. Mah, “The methanogenic bacteria, their ecology and physiology,” in Trends in the Biology of Fermentations for Fuels and Chemicals, edited by Hollaender, et al., Plenum Pub., 357-373 (1981).Google Scholar
  15. 15.
    M. J. Mclnerney, M. P. Bryant, and N Phennig, “Anaerobic bacterium that degrades fatty acids in syntrophic assocaition with methanogens,” Arch. Microbiol., 122, 129–135 (1979).Google Scholar
  16. 16.
    R.A. Mah, “Methanogenesis and methanogenic partnerships,” Phil. Trans. R. Soc. London B 297, 599–616 (1982).Google Scholar
  17. 17.
    P.L. McCarty, “History and overview of anaerobic digestion,” Second Int’l. Symp. on An. Dig., Travemunde, W. Germany (1981).Google Scholar
  18. 18.
    M.P. Bryant et al., “Methanobacillus omelianski, a symbiotic association of two species of bacteria,” Arch. Microbiol., 59, 20–32 (1967).Google Scholar
  19. 19.
    W.H. Lorowitz and M. P. Bryant, “Co-culture of stearate-utilizing bacterium in co-culture with an H 2-utilizing Desulfovibris,” Personal communication (1982).Google Scholar
  20. 20.
    R.K. Thauer, K. Jungerman, and K Decker, “Energy conservation in chemotrophic anaerobic bacteria,” Bacteriol. Rev., 41, 514–541, 100-180 (1977).Google Scholar
  21. 21.
    M.J. McInerney and M. P. Bryant, “Review of methane fermentation fundamentals,” CRC Press (1981).Google Scholar
  22. 22.
    R.E. Hungate, The Rumen and its Microbes (Academic Press, 1966).Google Scholar
  23. 23.
    E.L. Iannotti et al., “Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes, changes caused by interspecies transfer of H 2J. Bact., 114, 1231–1240 (1973).Google Scholar
  24. 24.
    P.H. Smith, “Studies of methanogenic bacteria in sludge,” EPA—600/ 2-80-093 Research Report (1980).Google Scholar
  25. 25.
    P.H. Smith and P. S. Shuba, “Terminal anaerobic dissimilation of organic molecules,” Proc. Bioconversion Energy Res. Conf., 8-14 (1973).Google Scholar
  26. 26.
    H.A. Barker, “Studies upon the methane producing bacteria,” Arch. Microbiol., 7, 420–438 (1936).Google Scholar
  27. 27.
    R.E. Speece, G. F. Parkin, and D Gallagher, “Nickel stimulation of anaerobic digestion,” Wat. Res. 17 667–683 (1983).Google Scholar
  28. 28.
    G. Lettinga et al., “Anaerobic treatment of methanolic wastes,” Water Research, 13, 725 (1979).Google Scholar
  29. 29.
    L. van den Berg, et al., “Factors affecting rate of methane fermentation from acetic acid by enriched methanogenic cultures,” Can. Soc. Microbiol., 22, 1313–1319 (1976)/Google Scholar
  30. 30.
    R.A. Mah, M. R. Smith, and L Baresi, “Studies on an acetate-fermenting strain of Methanosarcina,” Appl. and Environ. Microbiol., 35, 1174–1184 (1978).Google Scholar
  31. 31.
    M.A. Pretorius, “The effect of formate on the growth of acetate utilizing methanogenic bacteria,” Wat. Res., 6, 1213–1217 (1972).Google Scholar
  32. 32.
    R.S. Wolfe, “Microbial formation of methane,” Adv. Microbial Physiol., 6, edited by A. H. Rose, J. F. Wilkinson (Academic Press, New York-London, 1971), pp. 107–146.Google Scholar
  33. 33.
    J.S. Jeris and P. L. McCarty, “The biochemistry of methane fermentation using C 14 tracers,” J. Water Poll. Control Fed., 37, 178–192 (1965).Google Scholar
  34. 34.
    P.H. Smith and R. A. Mah, “Kinetics of acetate metabolism during sludge digestion,” Appl. Microbiol., 14, 368–372 (1966).Google Scholar
  35. 35.
    H. Kaspar and K Wuhrmann, “Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge,” Appl. Envir. Microbiol., 36, 1–7 (1978).Google Scholar
  36. 36.
    W.E. Balch, et al., “An ancient divergence among the bacteria,” J. Mol. Evol., 9, 305–311 (1977).Google Scholar
  37. 37.
    O. Kandler and H Konig, “Chemical composition of peptidoglycan-free cell walls of methanogenic bacteria,” Arch. Microb., 118 (2), 141–152 (1978).Google Scholar
  38. 38.
    C. R. Woese and G. E. Fox, “Phylogenetic structure of the prokaryotic domain: the primary kingdoms” Proc. Nat’l. Acad. Sci., 74, 5088–5090 (1977).Google Scholar
  39. 39.
    W.E. Balch, “Methanogens: their impact on our concept of procaryote diversity,” Zbl. Bakt.Hyg. I. Abt. Orig., Archaebacteria: Proceedings of the First International Workshop on Archaebacteria, 3, 295–303 (1982).Google Scholar
  40. 40.
    W.E. Balch and R. S. Wolfe, “Specificity and biological distribution of Coenzyme M (2-mercaptoethanesulfonic acid),” J. Bacteriol., 137, 256–263 (1979).Google Scholar
  41. 41.
    B.A. Huser, K. Wurhmann, and A. J. B. Zehnder, “Methanothrix soehngenii non-hydrogen oxidizing methanobacterium,” Arch. Microbiol, 132, 1–9 (1982).Google Scholar
  42. 42.
    R.R. Mah and Kuhn, Intern. J. Syst. Bacteriol. (In press).Google Scholar
  43. 43.
    W.E. Balch and R. S. Wolfe, “Transport of Coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantiumJ. Bacteriol., 137, 264–273 (1979).Google Scholar
  44. 44.
    B.C. McBride and R. S. Wolfe, “A new coenzyme of methyl transfer, coenzyme M,” Biochemistry, 10, 2317–2324 (1971).Google Scholar
  45. 45.
    C.D. Taylor and R. S. Wolfe, “A simplified assay for coenzyme M (HSCH 2CH2SO3),”J. Biological Chem., 249, 4886–4890 (1974).Google Scholar
  46. 46.
    C.D. Taylor, et al., “Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium,”J. Bacteriol., 120, 974–975 (1974).Google Scholar
  47. 47.
    R.N. Gunsalus, et al., “Methyl transfer and methane formation,” Proceedings of the Symposium on Microbial Production and Utilization of Gases (H 2,CH 4,CO), E. Goltze, Gottingen, 191-197 (1977).Google Scholar
  48. 48.
    S. Shapiro and R. S. Wolfe, “Methyl CoM, an intermediate in methanogenic dissimilation of C 1 compounds by Methanosarcina barkeri,” J. Bacteriol., 141, 728–734 (1980).Google Scholar
  49. 49.
    P. Cheeseman, A. Toms-Wood, and R. S. Wolfe, “Isolation and properties of a fluorescent compound, factor 420, from Methanobacterium strain M.o.H.,” J. Bacteriology, 112, 527–531 (1972).Google Scholar
  50. 50.
    S.F. Tzeng, R. S. Wolfe, and M. P. Bryant, “Factor 420-dependent pyridine nucleotide—linked hydrogenase system of Methanobacterium ruminantium,”J. Bacteriology, 121, 154–191 (1975).Google Scholar
  51. 51.
    S.F. Tzeng, M. P. Bryant, and R. S Wolfe, “Factor 420-dependent pyridine nucleotide—linked formate metabolism of Methanobacterium ruminantium,”J. Bacteriology, 121, 192–196 (1975).Google Scholar
  52. 52.
    L.D. Eirich, G. D. Vogels, and R. S. Wolfe, “Proposed structure of coenzyme F 420 from methanobacterium,” Biochemistry, 17, 4583–4593 (1978).Google Scholar
  53. 53.
    H. Doddema and G Vogels, “Improved identification of methanogenic bacteria by fluorescence microscopy,” AppL Envir. Microbiol., 36, 752–754 (1978).Google Scholar
  54. 54.
    T. Edwards and B McBride, “New method for the isolation and identification of methanogenic bacteria.” AppL Microbiol., 29, 540–545 (1975).Google Scholar
  55. 55.
    W.B. Whitman and R. S. Wolfe, “Presence of nickel in factor F 430 from Methanobacterium bryantii,” Biochem. and Biophys. Res. Comm., 92, 1196–1201 (1980).Google Scholar
  56. 56.
    G. Diekert, B. Klee, and R Thauer, “Nickel, a component of factor F 430,” Arch. Microbiol., 124, 103–106 (1980).Google Scholar
  57. 57.
    W.L. Ellefson and R. S. Wolfe, “Component C of the methylreductase system of methanobacterium,” J. Biol. Chem., 256, 4259–4262 (1981).Google Scholar
  58. 58.
    G. Diekert, R. Jaenchen, and R. K. Thauer, “Biosynthetic evidence for nickel tetrapyrrole structure of factor.F 430 from Methanobacterium thermoautotrophicum,” FEBS Lett., 119, 118–120 (1980).Google Scholar
  59. 59.
    G. Diekert, et al., “Nickel requirement and factor F430 content of methanogenic bacteria,” J. Bact., 148, 459–464 (1981).Google Scholar
  60. 60.
    H.J. Doddema, “Anaerobic biochemical techniques applied in the purification of the hydrogenase of Methanobacterium thermoautotrophicum,” Antonie van Leeuwenhoek, J. Microbiol. Serol., 46, 7 (1980).Google Scholar
  61. 61.
    G. Fuchs, E. Stupperich, and R. K. Thauer, “Acetate assimilation and synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum,” Arch. Microb., 117 (1), 61–66 (1978).Google Scholar
  62. 62.
    M.P. Bryant, et al., “Nutrient requirements of methanogenic bacteria,” Adv. Chem. Ser., 105, 23–40 (1971).Google Scholar
  63. 63.
    L. Daniels and J. G. Zeikus, “One-carbon metabolism in methanogenic bacteria—Analysis of short-term fixation products of C 14 O 2 and C 14 H 3 OH incorporated into whole cells,” J. Bacteriol., 136, 75–84 (1978).Google Scholar
  64. 64.
    J.G. Zeikus, et al., “Bacterial methanogenesis: acetate as a methane precursor in pure culture,” Arch. Microb., 104, 129–134 (1975).Google Scholar
  65. 65.
    M. R. Smith and R. A. Mah, “Acetate as sole carbon and energy source for growth of Methanosarcina strain 227,” Appl. Envir. Microbiol. 39, 993–999 (1980).Google Scholar
  66. 66.
    J. G. Zeikus and R. S. Wolfe, “Methanobacterium thermoautotrophicum sp. n., an aerobic, autotrophic extreme thermophile,” J. Bacteriol. 109, 707–713 (1980).Google Scholar
  67. 67.
    M. P. Bryant, B. C. McBride, and R. S. Wolfe, “Hydrogen oxidizing methane bacteria. I. Cultivation and methanogenesis,” J. Bacteriol. 95(1), 1118–1123 (1968).Google Scholar
  68. 68.
    B. A. Blaylock and T. C. Stadtman, “Methane biosynthesis by Methanosarcina barkeri. Properties of soluble enzyme system,” Arch, of Biochem. and Biophysics (1966).Google Scholar
  69. 69.
    E. A. Wolin, M. J. Wolin, and R. S. Wolfe, “Formation of methane by bacterial extracts,” J. Biol. Chem. 238, 2882–2886 (1963).Google Scholar
  70. 70.
    H. J. Doddema et al. “ATP Hydrolysis and synthesis by membrane-bound ATP—synthetase complex of Methabacterium thermoautotrophicum J. Bacteriol. 1361 19–23 1978Google Scholar
  71. 71.
    E. S. Pantskhava and V. N. Bukin, “Effect of ATP, ADP, and AMP on production of methane from cobalamin by cell-free extracts of Methanobacillus kuzneceovii,” Dokl Akad. Nauk SSSR 206, 494–496 (1972).Google Scholar
  72. 72.
    A. M. Roberton and R. S. Wolfe, “Adenosine triphosphate pools in Methanobacterium,” J. Bacteriol. 102, 43–51 (1970).Google Scholar
  73. 73.
    J. G. Zeikus et al., “Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum,” J. Bacteriol. 132, 604–613 (1977).Google Scholar
  74. 74.
    M. S. Delafontaine, H. P. Naveau, and E. J. Nyns, “Fluorimetric monitoring of methanogenesis in anaerobic digesters,” Biotech. Let. 1, 71–73 (1980).Google Scholar
  75. 75.
    J. K. Kristjansson, P. Schonheit, and R. K. Thauer, “Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate,” Arch. Microbiol., 131, 278–282 (1982).Google Scholar
  76. 76.
    B. A. Huser, K. Wuhrman, and A. J. B. Zehnder, “Methanothrix soehngenii non-hydrogen oxidizing methanobacterium,” Arch. Microbiol. 132, 1–9 (1982).Google Scholar
  77. 77.
    G. Lettinga and N. N. Vinken, “Feasibility of the VASB process for the treatment of low strength wastes,” Proc. Purdue Ind. Wastes Conf. (May 1980).Google Scholar
  78. 78.
    E. L. Iannotti et al., “The effect of digester fluids, swine manure extract and rumen fluid on the growth of bacteria from an anaerobic swine manure digester,” Dev. Ind. Microbiol. 22, 565–576 (1981).Google Scholar
  79. 79.
    M. P. Bryant, “Microbial methane production—theoretical aspects,” J. Anim. Sci. 48, 193–201 (1979).Google Scholar
  80. 80.
    R. A. Mah et al. “Biogenesis of methane”, Ann. Rev.Microbiol. 31, 309–341 (1977).Google Scholar
  81. 81.
    E. J. Kirsch and R. M. Sykes, “Anaerobic digestion in biological waste treatment,” Progr. Ind. Microbiol. 9, 155–239 (1971).Google Scholar
  82. 82.
    E. L. Iannotti, J. R. Fischer, and D. M. Sievers, “Medium for enhanced growth of bacteria from a swine manure digester,” Appl. Environ. Microbiol. 43, 247–249 (1982).Google Scholar
  83. 83.
    D. P. Chynoweth and R. A. Mah, “Bacterial populations and end products during anaerobic sludge fermentation of glucose,” J. Wat. Poll. Control Fed. 49, 405–412 (1977).Google Scholar
  84. 84.
    R. A. Mah and C Sussman, “Microbiology of anaerobic sludge fermentation. I. Enumeration of the nonmethanogenic anaerobic bacteria,” Appl. Microbiol. 16, 358–361 (1968).Google Scholar
  85. 85.
    D. F. Toerien, “Population description of the nonmethanogenic phase of anaerobic digestion. I. Isolation, characterization and identification of numerically important bacteria,” Water Res. 4, 129–148 (1970).Google Scholar
  86. 86.
    D. R. Boone and M. P. Bryant, “Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. now from methanogenic ecosystems,” Appl. Environ. Microbiol. 40, 626–632 (1980).Google Scholar
  87. 87.
    R. S. Wolfe, “Microbial biochemistry of methane—a study of contrasts,” Intl. Review Biochem. Microbio Biochemistry 21, edited by Quayle (1970).Google Scholar
  88. 88.
    D. R. Caldwell and M. P. Bryant, “Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria,” Appl. Microbiol. 14, 794–801 (1966).Google Scholar
  89. 89.
    E. L. Iannotti, J. R. Fischer, and D. M. Sievers, “Medium for the enumeration and isolation of bacteria from a swine waste digester,” Appl. Environ. Microbiol. 36, 555–566 (1978).Google Scholar
  90. 90.
    C. Eller, M. R. Crabill, and M. P. Bryant, “Anaerobic roll tube media for nonselective enumeration and isolation of bacteria in human feces,” Appl. Microbiol. 22, 522–529 (1971).Google Scholar
  91. 91.
    E. J. Kirsch, “Studies on the enumeration and isolation of obligate bacteria from digesting sewage sludge,” Dev. Ind. Microbiol. 10, 170–176 (1969).Google Scholar
  92. 92.
    K. A. Pittman, K. Lakshmanan, and M. P. Bryant, “Oligopeptide uptake by Bacteroides ruminicola,” J. Bacteriol. 93, 1499 (1967).Google Scholar
  93. 93.
    M. P. Bryant and I. M Robinson, “Some nutritional characteristics of predominate culturable ruminai bacteria,” J. Bacteriol. 84, 605 (1962).Google Scholar
  94. 94.
    M. P. Bryant, “Nutritional requirements of the predominant rumen cellulolytic bacteria,” Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 1809 (1973).Google Scholar
  95. 95.
    M. P. Bryant, “Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract,” Am. J. Clin. Nutr. 22, 1313 (1974).Google Scholar
  96. 96.
    R. S. Emery, C. K. Smith, and L Fai To, “Utilization of inorganic sulfate by rumen microorganisms. II. The ability of single strains of rumen bacteria to utilize inorganic sulfate,” Appl. Microbiol. 5, 363 (1957).Google Scholar
  97. 97.
    R. E. Speece and Perry L. McCarty, “Nutrient requirements and biological solids accumulation in anaerobic digestion,” Adv. in Wat. Poll. Res. 2, 305–322 (1964).Google Scholar
  98. 98.
    D. J. Hoban and L. van den Berg, “Effect of iron on conversion of acetic acid to methane during methanogenic fermentations,” J. Appl. Bacteriol. 47, 153–159 (1979).Google Scholar
  99. 99.
    P. Scherer and H Sahm, “Effect of trace elements and vitamins on the growth of Methanosarcina barkeri,” Acta Biotechnologica 1, 57–65 (1981).Google Scholar
  100. 100.
    R. E. Speece, E. P. A. Seminar on Anaerobic Digestion, St. Louis.Google Scholar
  101. 101.
    R. Mah, R. Hungate, and K Ohwaki, “Acetate, a key intermediate in methanogenesis,” Seminar on Microbial Energy Conversion, edited by H. G. Schlegel (E. Goltz KG, Gottingen, Germany, 1976) 97–106.Google Scholar
  102. 102.
    R. S. Tanner, “Novel compounds from methanogens: Characterization of component B of the methylreductase system and mobile factor,” Ph. D. Diss., Univ. of Illinois-Urbana, 1982.Google Scholar
  103. 103.
    A. M. Roberton and R. S. Wolfe, “ATP requirement for methanogenesis in cell extracts of Methanobacterium strain M. o. H.,”Biochem. Biophys. Acta, 420-429 (1969).Google Scholar
  104. 104.
    D. O. Mountfort, “Effect of adenosine 5′-monophosphate on adenosine 5′-triphosphate activation of methyl coenzyme M methylreductase in cell extracts of Methanosarcina barkeri,” J. Bacteriology 143, 1039–1041 (1980).Google Scholar
  105. 105.
    G. Diekert, B. Weber, and R. K. Thauer, “Nickel dependence of factor F 430 content in Methanobacterium thermoautotrophicum,” Arch. Microbiol. 227, 273–278 (1980).Google Scholar
  106. 106.
    J. M. Symons and McKinney, “The biochemistry of nitrogen in the synthesis of activated sludge,” Sew. and Ind. Wastes 30, 874 (1961).Google Scholar
  107. 107.
    S. R. Hoover and N Porges, “Assimilation of dairy wastes by activated sludge II. The equation of synthesis and oxygen utilization,” Sew. and Ind. Wastes 24, 306 (1952).Google Scholar
  108. 108.
    D. O. Mountfort and R. A. Asher, “Effect of inorganic sulfide on the growth and metabolism of M. barkeri, strain DM,” Appl. Envir. Microbiol. 37, 670–675 (1979).Google Scholar
  109. 109.
    P. H. Ronnow and L. A. H. Gunnarsson, “Sulfide dependent methane production and growth of thermophilic methanogenic bacterium,” Appl. Envir. Microbiol. 42, 580–584 (1981).Google Scholar
  110. 110.
    P. H. Ronnow and L. A. H. Gunnarsson, “Response of growth and methane production to limiting amounts of sulfide and ammonia in two thermophilic methanogenic bacteria,” FEMS Microbiol. Lett. 14, 311–315 (1982).Google Scholar
  111. 111.
    L. A. H. Gunnarsson and P. H. Ronnow, “Variation of the ATP pool in thermophilic methanogenic bacteria during nitrogen or sulfur starvation,” FEMS Microbiol Lett. 14, 317–320 (1982).Google Scholar
  112. 112.
    G. B. Patel, A. W. Khan, and L. A. Roth, “Optimum levels of sulfate and iron for the cultivation of pure cultures of methanogens in synthetic media,” J. Appl. Bacteriol. 45, 347–356 (1978).Google Scholar
  113. 113.
    A. W. Khan and T. M. Trotter, “Effects of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge,” Appl. Environ. Microbiol. 35, 1027–1034 (1978).Google Scholar
  114. 114.
    A. Wellinger and K Wuhrman, “Influence of sulfide compounds in metabolism of methanobacterium strain AZ,” Arch. Microbiol. 115, 13–17 (1977).Google Scholar
  115. 115.
    A. J. B. Zehnder and K Wuhrman, “Physiology of a Methanobacterium strain AZ,” Arch. Microbiol. 111, 199–205 (1977).Google Scholar
  116. 116.
    P. Scherer and H Sahm, “Influence of sulfur containing compounds on the growth of Methanosarcina barkeri in a defined medium,” European J. Applied Microbiol. Biotechnol. 12, 28–35 (1981).Google Scholar
  117. 117.
    A. J. B. Zehnder et al., “Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium” Arch. Microbiol. 124, 1–11 (1980).Google Scholar
  118. 118.
    A. W. Khan and T. M. Trotter, “Effects of sulfur-containing compounds on anaerobic degradation of cellulose to methane by mixed cultures obtained from sewage sludge,” Appl. Environ. Microbiol. 35, 1027–1034 (1978).Google Scholar
  119. 119.
    A. W. Lawrence and P. L. McCarty, “The effects of sulfides on anaerobic treatment,” Int. J. Air and Wat. Poll. 10 207–221 (1966).Google Scholar
  120. 120.
    D. Wise, personal communication, 1982.Google Scholar
  121. 121.
    P. Schonheit, J. Moll, and R. K. Thauer, “Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum,” Arch. Microbiol. 123, 105–107 (1979).Google Scholar
  122. 122.
    J. B. Jones and T. C. Stadtman, “Methanococcus vannielii: culture and effect of selenium and tungsten on growth,” J. Bact. 130, 1404–1406 (1977).Google Scholar
  123. 123.
    G. T. Taylor and S. J. Pirt, “Nutrition and factors limiting the growth of a methanogenic bacterium. (Methanobacterium thermoautotrophicum),” Arch. Microbiol. 113, 17–22 (1977).Google Scholar
  124. 124.
    P. L. McCarty and C. A. Vath, “Volatile acid digestion at high loading rates,” Int. J. of Air and Wat. Poll. 6, 65–73 (1962).Google Scholar
  125. 125.
    W. D. Murray and L. van den Berg, “Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors,” Appl. Environ. Microbiol. 42, 502–505 (1981).Google Scholar
  126. 126.
    M. E. Jack, G. J. Farquhar, and G. M. Cornwall, “Anaerobic digestion of primary sludge containing iron phosphate,” Water Poll. Res. in Canada 8, 91–109 (1976).Google Scholar
  127. 127.
    C. E. Lankford, “Bacterial assimilation of iron,” CRC Critical Reviews of Microbiol., 273-331 (1973).Google Scholar
  128. 128.
    M. R. Winfrey and J. G. Zeikus, “Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments,” Appl. and Environ. Microbiol. 33, 275–281 (1977).Google Scholar
  129. 129.
    Cecil Lue-Hing, Chicago Metropolitan Sanitary District, personal communcation, 1974.Google Scholar
  130. 130.
    J. Yang et al., “The response of methane fermentation to cyanide and chloroform,” Prog. Wat. Tech. 12, 977–989 (1980).Google Scholar
  131. 131.
    W. Lin Chou et al., “The effect of petrochemical structure on methane fermentation toxicity,” Prog. Wat. Tech. 10, 545–550 (1978).Google Scholar
  132. 132.
    W. Lin Chou, R. E. Speece, and R. H. Siddiqi, “Acclimation and degradation of petrochemical wastewater components by methane fermentation,” Biotech. and Bioeng. Symposium No. 8, 391-414 (1978).Google Scholar
  133. 133.
    J. B. Healy, Jr., and L. Y. Young, “Anaerobic biodegradation of eleven aromatic compounds to methane,” Appl. Envir. Microbiol. 38, 84–89 (1979).Google Scholar
  134. 134.
    C. Weng and John S. Jeris, “Biochemical mechanisms in the methane fermentation of glutamic and oleic acids,” Wat. Res. 10, 9–18 (1976).Google Scholar
  135. 135.
    A. W. Lawrence and P. L. McCarty, “Kinetics of methane fermentation in anaerobic treatment,” J. Wat. Poll. Control 41, R1-R17 (1969).Google Scholar
  136. 136.
    I. J. Kugelman and K. K. Chin, “Toxicity, synergism, and antagonism in anaerobic waste treatment processes in Anaerobic Biological Treatment Processes. Advances in Chemistry Series,” 105, 55–90 (1971).Google Scholar
  137. 137.
    J. F. Ferguson, B. J. Eis, and M. M. Benjamin, “Neutralization in anaerobic treatment of an acidic waste,” I. A. W. P. R. Specialized Seminar-Anaerobic Treatment of Wastewater in Fixed Film Reactors, Copenhagen, Denmark, pp. 339-355 (1982).Google Scholar
  138. 138.
    Metcalf and Eddy, Wastewater Engineering: Treatment Disposal Reuse, (New York, McGraw-Hill, 1979).Google Scholar
  139. 139.
    P. L. McCarty, “Anaerobic waste treatment fundamentals,” Public Works, Sept. Oct. Nov. Dec., 1964.Google Scholar
  140. 140.
    J. T. Pfeffer, “Increased loadings on digesters with recycle of digested solids,” J. Wat. Poll. Control Fed. 40, 1920–1933 (1968).Google Scholar
  141. 141.
    J. T. O’Rourke, “Kinetics of anaerobic treatment at reduced temperature,” Ph. D. Diss., Stanford Univ., 1968.Google Scholar
  142. 142.
    D. O. Mountfort and M. P. Bryant, “Isolation and characterization of an anaerobic, syntrophic bacterium degrading benzoate from sewage sludge,” Arch. Microbiol. (in press).Google Scholar
  143. 143.
    J. E. Andrews and S. P. Graef, “Dynamic modeling and simulation of the anaerobic digestion process,” Anaerobic Biological Treatment Processes, Adv. in Chemistry Series, 105, 126 (1971).Google Scholar
  144. 144.
    R. E. Speece and J Kem, “The effect of short-term temperature variations on methane production,” J. Wat. Poll. Control Fed. 42, 1990–1997 (1970).Google Scholar
  145. 145.
    A. W. Lawrence and P. L. McCarty, “The role of sulfide in preventing heavy metal toxicity in anaerobic treatment,” J. Wat. Poll. Control Fed. 37, 392–409 (1965).Google Scholar
  146. 146.
    P. N. Hobson, S. Bousfield, and R Summers, Methane Production from Agricultural and Domestic Wastes, Halsted Press Div. of John Wiley & Sons, 1981.Google Scholar
  147. 147.
    P. N. Hobson, Microbial Polysaccharides and Polysaccharases, edited by R. C. W. Berkeley, G. W. Gooday, and D. C. Ellwood, (Academic Press, London and New York, 1979) p. 377.Google Scholar
  148. 148.
    S. Ghosh and D. L. Klass, Proc. Biochem. 13, 15 (1978).Google Scholar
  149. 149.
    P. N. Hobson, Solar Energy in Agriculture Joint Conf. (C9), Univ. of Reading and UK-ISES, UK Section of ISES, London, pp. 12-14.Google Scholar
  150. 150.
    R. Summers, Report on Straw Utilization Conf., MAFF, p. 84 (1978).Google Scholar
  151. 151.
    J. T. Pfeffer, Proc. Biochem. 13, 6 (1978).Google Scholar
  152. 152.
    J. E. Robbins, M. T. Arnold, and S. L. Lacher, Appl. Environ. Microbiol. 38, 175 (1979).Google Scholar
  153. 153.
    R. E. Hungate, Bact. Rev. 14, 1 (1950).Google Scholar
  154. 154.
    L. R. Maki, “Experiments on the microbiology of cellulose decomposition in a municipal sewage plant,” Antonie von Leewenhoek, 20, 185–200 (1954).Google Scholar
  155. 155.
    P. N. Hobson, B. G. Shaw, Water Res. 8, 507 (1974).Google Scholar
  156. 156.
    P. N. Hobson and B. G. Shaw. Microbial Aspects of Pollution. edited by G. Sykes and F. A. Skinner (Academic Press, London and New York, 1971) p. 103.Google Scholar
  157. 157.
    D. F. Torien, Water Res. 1, 147 (1967).Google Scholar
  158. 158.
    P. N. Hobson, S. Bousfield, and R Summers, “Anaerobic digestion of organic matter,” CRC Critic. Rev. Environ. Control 4, 131–191 (1974).Google Scholar
  159. 159.
    J. W. Gossett and R. L. Belser, “Anaerobic digestion of waste activated sludge,” J. Env. Eng. Div. ASCE. 108, 1101–1120 (1982).Google Scholar
  160. 160.
    Y. R. Chen and A. G. Hashimoto, “Kinetics of methane fermentation,” Biotech. and Bioeng., Symp. No. 8, 269–282 (1978).Google Scholar
  161. 161.
    A. D. Carr and R. C. O’Donnell, “The dynamic behavior of an anaerobic digester,” Prog. Wat. Tech. 9, 727–738 (1977).Google Scholar
  162. 162.
    J. Olesczkiewicz, Seminar on Anaerobic Wastewater Treatment and Energy Recovery by Duncan, Lagnese Assoc. Inc., Pittsburgh, Pa., 1981.Google Scholar
  163. 163.
    F. Pearson, C. Shium-Chung, and Maryse Gauteer, “Toxic inhibition of anaerobic digestion,” J. Wat. Poll. Control Fed. 52, 472–482 (1980).Google Scholar
  164. 164.
    Brian Eis et al., “The fate and effect of bisulfite in anaerobic treatment,” 1981 Annual Wat. Poll. Control Fed. Mtg. Detroit. Preprint.Google Scholar
  165. 165.
    R. D. Neufeld, J. D. Mack, and J. P. Strakey, “Anaerobic phenol biokinetics,” J. Wat. Poll. Control Fed. 52, 2367–2377 (1980).Google Scholar
  166. 166.
    G. F. Parkin and R. E. Speece, “Modeling toxicity in methane fermentation systems,” Am. Soc. Civil Eng., EE3, June 1982, p. 515.Google Scholar
  167. 167.
    A. M. Buswell and H. F. Mueller, “Mechanisms of methane fermentation,” Ind. Eng. Chem. 44, 550 (1952).Google Scholar
  168. 168.
    P. L. McCarty, “Stoichiometry of biological reactions,” Intl. Conf. “Toward a Unified Concept of Biological Waste Treatment Design,” Atlanta, Ga. (1972).Google Scholar
  169. 169.
    P. L. McCarty, “Anaerobic processes,” Birmingham Short Course on Design Aspects of Biological Treatment, I. A. W. P. R.Google Scholar
  170. 170.
    J. C. Young and Perry L. McCarty, “Anaerobic filter for waste treatment,” J. Wat. Poll Control 41, 5 (1969).Google Scholar
  171. 171.
    J. B. Coulter, S. Soneda, and M. B. Ettinger, “Anaerobic contact process for sewage disposal,” Sew. and Ind. Wastes, 29, 648 (1957).Google Scholar
  172. 172.
    W. A. Pretorius, “Anaerobic digestion of raw sewage,” Wat. Res. 5, 681–687 (1971).Google Scholar
  173. 173.
    G. Lettinga et al., “Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment,” Biotech. and Bioeng., 22, 699–734 (1980).Google Scholar
  174. 174.
    J. S. Jeris, DOE workshop, “Anaerobic Filter. An Energy Plus for Wastewater Treatment,” Howey-in-the-Hills, Fla., ANL-CNSV-TM-50, 1980, pp. 171-178.Google Scholar
  175. 175.
    M. T. Suidan and W. H. Cross, Ibid., pp. 59-76.Google Scholar
  176. 176.
    A. A. Friedman, Ibid., pp. 95-114.Google Scholar
  177. 177.
    W. N. Torpey and N. R. Melbinger, “Reduction of digested sludge volume by controlled recirculation,” J. Wat. Poll. Control Fed. 39, 1464–1474 (1967).Google Scholar
  178. 178.
    H. O. Buhr and J. F. Andrews, “The thermophilic anaerobic digestion process,” Wat. Res. 11, 129–143 (1977).Google Scholar
  179. 179.
    H. O. Buhr and J. F. Andrews, “The thermophilic anaerobic digestion process,” Wat. Res. 11, 129–143 (1977).Google Scholar
  180. 180.
    C. G. Golueke, “Temperature effects an anaerobic digestion of raw sewage sludge,” Sew. and Ind. Wastes J. 30, 1225 (1958).Google Scholar
  181. 181.
    W. F. Garber, “Operating experience with thermophilic anaerobic digestion,” J. Wat. Poll. Control Fed. 54, 1170–1175 (1982).Google Scholar
  182. 182.
    R. R. Rimkus, J. M. Ryan, and E. J. Cook, “Full-scale thermophilic digestion at the West-Southwest Sewage Treatment Works, Chicago, Illinois,” J. Wat. Poll. Control Fed. 54, 1447–1457 (1980).Google Scholar
  183. 183.
    H. M. Popova and O. T. Bolotina, “The present state of purification of town sewage and the trend in research work in the City of Moscow,” Int. J. Air and Wat. Pol. 7, 145 (1963).Google Scholar
  184. 184.
    J. T. Pfeffer, “Methane fermentation engineering aspects of reactor design,” 34th Int’l. Conf. of Cebedeau, Belgium, 1981.Google Scholar
  185. 185.
    Handbook of Chemistry and Physics, edited by R. C. Weast (CRC Press, 1979).Google Scholar
  186. 186.
    S. Ghosh, “Energy production efficiency in anaerobic digestion—a basis for advanced process development,” presented at annual meeting, Wat. Poll. Control Fed., 1981.Google Scholar
  187. 187.
    V. H. Varel, A. G. Hashimoto, and Y. R. Chen, “Effect of temperature and retention time on methane production from beef cattle waste,” Appl. Environ. Microbiol. 40, 217–222 (1980).Google Scholar
  188. 188.
    K. J. Kennedy and L. van den Berg, “Effects of temperature and overloading on the performance of anaerobic fixed film reactors,” Purdue Ind. Wastes Conf., 1981.Google Scholar
  189. 189.
    C. L. Cooney and D. L. Wise, “Thermophilic anaerobic digestion of solid waste for fuel gas production,” Biotech. and Bioeng. 17, 1119–1135 (1975).Google Scholar
  190. 190.
    L. van den Berg, C. P. Lentz, and D. W. Armstrong, “Methane production rates of anaerobic fixed film fermenters as compared to those of anaerobic contact and fully mixed continuous fermenters,” Advances in Biotechnology II, 251–256 (1981).Google Scholar
  191. 191.
    Emschergenossenschaft, Bothrop Central Sludge Treatment Plant—Status: June 1978.Google Scholar
  192. 192.
    R. T. Haug et al. “Effect of thermal pretreatment on digestibility and dewaterability of organic sludges,” J. Wat. Poll. Control 50, 73–85 (1978).Google Scholar
  193. 193.
    P. L. McCarty et al., “Thermochemical treatment of lignocellulosic and nitrogenous residuals for increasing anaerobic biodegradability,” Second Annual Symposium on Fuels from Biomass, Renssalaer Polytechnical Inst., June 1978.Google Scholar
  194. 194.
    P. C. Singer et al., “Assessment of coal conversion wastewaters: Characterization and preliminary biotreatability.” EPA-600/7-78-181, Sept. 1978.Google Scholar
  195. 195.
    A. M. Buswell and S. L. Neave, Laboratory studies of sludge digestion, III. State Water Survey, Bulletin No. 30 (1930).Google Scholar
  196. 196.
    G. E. Symons and A. M. Buswell. “The methane fermentation of carbohydrates,” J. Am. Chem. Soc. 55 (1933).Google Scholar
  197. 197.
    D. Tarvin and A. M. Buswell, “The methane fermentation of organic acids and carbohydrates,” J. Am. Chem. Soc. 56 (1934).Google Scholar
  198. 198.
    A. M. Buswell and W. F. Hatfield, Anaerobic Fermentations. Illinois State Water Survey, Bulletin No. 32 (1936).Google Scholar
  199. 199.
    J. C. Hovious, R. A. Conway, and C. W. Ganze, “Anaerobic lagoon pretreatment of petrochemical wastes,” J. Wat. Poll. Control 45, 71 (1973).Google Scholar
  200. 200.
    J. S. Jeris et al., “The biochemistry of anaerobic digestion,” Final Report: Research Grant 17070 DFK, Fed. Wat. Poll. Control Admin., August 1970.Google Scholar
  201. 201.
    J. M. Gossett et al., “Heat treatment of refuse for increasing anaerobic biodegradability,” Civil Engineering Technical Report No. 205, Stanford Univ., June 1976.Google Scholar
  202. 202.
    J. Chmielowski and W Wasilewski, “An investigation of the dynamics of anaerobic decomposition of some phenols in the methane fermentation,” Zeszyty Naukowe Politechniki Slaskij, Inzy ieria Sanitaria 9, 121 (1966).Google Scholar
  203. 203.
    E. R. Witt, W. S. Humphrey, and T. E. Roberts, “Full scale anaerobic filter treats high strength wastes,” Proc. Purdue Ind. Waste Conf., 1979.Google Scholar
  204. 204.
    W. F. Owen et al., “Bioassay for monitoring biochemical methane potential and anaerobic toxicity,” Water Research 13, 485–492 (1979).Google Scholar
  205. 205.
    B. P. Sen and T. R. Bhaskaran, “Anaerobic digestion of liquid molasses distilling wastes,” J. Wat. Poll. Control., 34, 1015 (1962).Google Scholar
  206. 206.
    G. J. Stander et al., “Treatment of wine distillery wastes by anaerobic digestion,” Proc. 22nd Purdue Ind. Wastes Conf. (May 1967).Google Scholar
  207. 207.
    H. A. Painter, “Treatment of malt whiskey distillery wastes by anaerobic fermentation,” Brewers’ Guide (Brit.) (August 1960).Google Scholar
  208. 208.
    R. N. Guzman, “Control of caning sugar wastes in Puerto Rico,” J. Wat. Poll. Control 34, 1213 (1962).Google Scholar
  209. 209.
    A. M. Buswell, P. E. Gaffney, and R. S. Ingols, “Anaerobic digestion treats cotton mill desize waste,” Wastes Eng. 35 402 (1962).Google Scholar
  210. 210.
    E. E. Grishna, “The purification of wastewaters from wool washing by means of anaerobic fermentation,” Chem. Abs., 64 (1964).Google Scholar
  211. 211.
    M. Tanaka, M. Dazai. and H Ono. “Biological treatment of wool spinning wastes,” Chem. Abs. 64, 19181 (1966).Google Scholar
  212. 212.
    M. J. Nevzorov, “Clarification of industrial wastes by anaerobic fermentation,” Chem. Abs. 64, 12355 (1964).Google Scholar
  213. 213.
    E. Hindin and G. H. Dunstan, “Anaerobic digestion of potato processing wastes,” J. Wat. Poll. Control 35, 486 (1963).Google Scholar
  214. 214.
    O. O. Olson, J. W. Vennes, and W. von Huevelen, “Microbiological treatment of protein water waste from potato starch manufacturing,” Official Bull. N. Dakota Wat. and Sew. Wks., 34, 11 (1966).Google Scholar
  215. 215.
    C. I. Ivanov, “Anaerobic purification of tannery waste waters,” J. Am. Leather Chem. Assoc. 58, 389 (1963).Google Scholar
  216. 216.
    W. E. Gates and S. D. Lin, “Pilot plant studies of anaerobic treatment of tannery effluents,” J. Am. Leather Chem. Assoc. 61, 516 (1966).Google Scholar
  217. 217.
    G. S. Schroepfer and N. R. Ziemke, “Development of the anaerobic contact process I. Pilot plant investigations and economics,” Sew. and Ind. Wastes 31, 164 (1959).Google Scholar
  218. 218.
    D. K. Silvester, “The treatment of slaughterhouse waste by anaerobic digestion,” J. Inst. of Public Health Eng. 61, 266 (1962).Google Scholar
  219. 219.
    A. J. Steffen and M Bedker, “Operation of full scale anaerobic contact treatment plant for meat packing wastes,” Proc. 16th Purdue Ind. Wastes Conf., 423 (1961).Google Scholar
  220. 220.
    M. R. Henzen, Report on Overseas Visit, National Institute for Water Research, P. O. Box 395, Pretoria, South Africa, 1966.Google Scholar
  221. 221.
    L. Bradney, W. Nelson, and R. E. Bragstad, “Treatment of meat packing wastes,” Sew. and Ind. Wastes 22, 807 (1950).Google Scholar
  222. 222.
    W. C. Hiatt, A. D. Carr, and J. F. Andrews, “Anaerobic digestion of rum distillery wastes,” Proc. 28th Purdue Ind. Wastes Conf., 1973.Google Scholar
  223. 223.
    D. W. Taylor and R. J. Burm, “Full scale anaerobic filter treatment of wheat starch plant wastes,” 71st Am. Inst. Chem. Eng. Mtg., 1970.Google Scholar
  224. 224.
    R. Koehler, “Anaerobic abban von Jefekabrikabwasser,” Wasser Luft, Betrieb 17, 342 (1973).Google Scholar
  225. 225.
    C. Jennett. See Jeris174, pp. 77-94.Google Scholar
  226. 226.
    M. S. Switzenbaum. See Jeris174, pp. 115-128.Google Scholar
  227. 227.
    John Ferguson, University of Washington, personal communication, 1978.Google Scholar
  228. 228.
    E. R. Hall, “Biomass retention and mixing characteristics in fixed-film and suspended growth anaerobic reactors,” I. A. W. P. R. Specialized Seminar— Anaerobic Treatment of Wastewater in Fixed Film Reactors, Copenhagen, Denmark, 1981, pp. 371-396.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. E. Speece

There are no affiliations available

Personalised recommendations