Skip to main content

The Nature of Polymer Friction

  • Chapter
Advances in Polymer Friction and Wear

Part of the book series: Polymer Science and Technology ((POLS,volume 5))

Abstract

The sliding friction between a solid polymer and another solid (polymer, metal, glass) usually is determined by the work of deformation of the polymer(s). The ratio F/N of frictional force to normal load commonly decreases for polymers when N increases because F is proportional to Nm+n and m+n < 1; m and nm are defined by the expressions w = k1Nm and d = k2Nn; w and d are the width and the depth of the disturbed material; k1 and k2 are proportionality constants. Friction in reproducible sliding is never caused by adhesion. The absence of adhesion is proved by the ease of normal separation of slider and support; and the cause of this absence is the presence of weak boundary layers (air, moisture, etc.) between the two. When these layers are eliminated, adherence of slider to support occurs and no usual sliding is possible. Attempts to correlate F with the true area S of contact are misleading because work must be performed to achieve this S. The common determinations of S are unsatisfactory. Theoretical and experimental determinations of the work done during frictional deformation of viscoelastic polymers is needed to account for the observed friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Bikerman, Physical Surfaces. Academic Press, New York, 1970, p. 444.

    Google Scholar 

  2. G. M. Bartenev and V. V. Lavrent’ev, Friction and Wear in Polymers [Russian], Khimiya, Leningrad 1972.

    Google Scholar 

  3. D. F. Moore and W. Geyer, Wear 22, 113 (1972).

    Article  CAS  Google Scholar 

  4. V. A. Belyi et al., Friction of Polymers [Russian], Nauka, Moscow 1972.

    Google Scholar 

  5. J. J. Bikerman, Rev. Mod. Phys. 16, 53 (1944).

    Article  Google Scholar 

  6. J. J. Bikerman, The Science of Adhesive Joints. Academic Press, New York, 1968.

    Google Scholar 

  7. J. J. Bikerman, Ind. S Eng. Chem., Sept. 1967, p. 40.

    Google Scholar 

  8. A. I. El’kin and V. K. Mikhailov, Mekh. Polim. 1970, 688.

    Google Scholar 

  9. R. S. Longhurst, Geometrical and Physical Optics, p. 475, Wiley, New York, 1967.

    Google Scholar 

  10. K. Tanaka, J. Phys. Soc. Japan 16, 2003 (1961).

    Article  CAS  Google Scholar 

  11. W. O. Yandell, Wear 21, 229 (1971)

    Google Scholar 

  12. W. O. Yandell, Wear 21 21, 313 (1972).

    Article  Google Scholar 

  13. Sh. M. Bilik et al., Mekh. Polim. 1969, 850.

    Google Scholar 

  14. G. V. Vinogradov et al., Wear 23, 33T 1973).

    Google Scholar 

  15. J. L. Lubkin in Handbook of Engineering Mechanics (W. Flügge, ed.) p. 42–1. McGraw-Hill, New York, 1962.

    Google Scholar 

  16. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, p. 413. McGraw-Hill, New York 1969.

    Google Scholar 

  17. K. V. Shooter and D. Tabor, Proc. Phys. Soc. B 65, 661 (1952).

    Article  Google Scholar 

  18. J. J. Bikerman, J. Macromol. Sci.- Rev. Macromol. Chem., in press.

    Google Scholar 

  19. A. Schallamach, Wear 13., 13 (1969).

    Article  Google Scholar 

  20. A. Schallamach, Wear 17, 301 (1971).

    Article  Google Scholar 

  21. S. C. Cohen and D. Tabor, Proc. Roy. Soc. (London) A 291, 186 (1966).

    Article  CAS  Google Scholar 

  22. N. M. Mikhin and K. S. Lyapin, Mekh. Polim. 1970, 854.

    Google Scholar 

  23. K. A. Grosch, Proc. Roy. Soc. (London) A 274, 21 (1963).

    Article  CAS  Google Scholar 

  24. K. C. Ludema and D. Tabor, Rubber Chem. Technol . 41, 462 (1968) .

    Article  Google Scholar 

  25. S. Bahadur and K. C. Ludema, Wear 18, 109 (1971).

    Article  CAS  Google Scholar 

  26. J. J. Bikerman, SPE Trans. 4, 290 (1964)

    CAS  Google Scholar 

  27. J. J. Bikerman, J. Paint Technol. 43, No. 9, 98 (1971).

    Google Scholar 

  28. G. V. Vinogradov, Yu. G. Yanovskii, and E. I. Frenkin, Brit. J. Appl. Phys. 18, 1141 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Bikerman, J.J. (1974). The Nature of Polymer Friction. In: Lee, LH. (eds) Advances in Polymer Friction and Wear. Polymer Science and Technology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9942-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9942-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9944-5

  • Online ISBN: 978-1-4613-9942-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics