Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 37))

  • 810 Accesses

Abstract

Prior information regarding a statistical model frequently constrains the shape of the parameter set and can often be quantified by placing inequality constraints on the parameters. For example, the expected response or the probability of a specific response may increase or decrease with the treatment level; a regression function may be nondecreasing or convex or both; the failure rate of a component may increase as it ages; or the treatment response may stochastically dominate the control. The fact that utilization of such ordering information increases the efficiency of procedures developed for statistical inference is well documented. The onetailed two-sample t-test provides a familiar example in which the procedure which utilizes the prior information (the one-sided test) dominates procedures which ignore this information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T. & Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Ann. Math. Statist. 26, 641–647.

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow, R.E., Bartholomew, D.J., Bremner, J.M. & Brunk, H.D. (1972). Statistical Inference under Order Restrictions. Wiley: New York.

    MATH  Google Scholar 

  • Barlow, R.E. & Brunk, H.D. (1972). The isotonic regression problem and its dual. J. Amer. Statist. Assoc. 67, 140–147.

    MathSciNet  MATH  Google Scholar 

  • Barlow, R.E. & van Zwet, W.R. (1970). Asymptotic properties of isotonic estimators for the generalized failure rate function. Part I: Strong consistency. In M.L. Puri (Ed.), Nonparantetric Techniques in Statistical Inference. Cambridge University Press, 159–173.

    Google Scholar 

  • Bartholomew, D.J. (1959). A test of homogeneity for ordered alternatives. Biometrika 46, 36–48.

    MathSciNet  MATH  Google Scholar 

  • Brunk, H.D. (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Statist. 26, 607–616.

    Article  MathSciNet  MATH  Google Scholar 

  • Chacko, V.J. (1963). Testing homogeneity against ordered alternatives. Ann. Math. Statist. 34, 945–956.

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoff, H. (1954). On the distribution of the likelihood ratio. Ann. Math. Statist. 25, 573–578.

    Article  MathSciNet  MATH  Google Scholar 

  • Eeden, C. van (1956). Maximum likelihood estimation of ordered probabilities. Proc. K. ned. Akad. Wet.(A), 59/Indag. math. 18, 444–455.

    Google Scholar 

  • Grenander U. 1956. On the theory of mortality measurement. Part II. Skand. Akt. 39 125–153.

    Google Scholar 

  • Jonckheere, A.R. (1954). A distribution-free k-sample test against ordered alternatives. Biometrika 41, 133–145.

    MathSciNet  MATH  Google Scholar 

  • Kudô, A. (1963). A multivariate analogue of the one-sided test. Biomaetrika 50, 403–418.

    MATH  Google Scholar 

  • Marshall, A.W. & Proschan, F. (1965). Maximum likelihood estimation for distributions with monotone failure rate. Ann. Math. Statist. 36, 69–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Perlman, M.D. (1969). One-sided problems in multivariate analysis. Ann. Math. Statist. 40, 549–567 (for corrections to the above paper, see Ann. Math. Statist. 42, 1777).

    Article  MathSciNet  MATH  Google Scholar 

  • Prakasa Rao, B.L.S. (1969). Estimation of a unimodal density. Sankhya (A) 3, 23–36.

    MathSciNet  Google Scholar 

  • Robertson, T. (1967). On estimating a density which is measurable with respect to a Ï€-lattice. Ann. Math. Statist. 38, 482–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Terpstra, T.J. (1952). The asymptotic normality and consistency of Kendall’s test against trend when ties are present in one ranking. Proc. Sect. Sei. K. ned. Akad. Wet. (A) 55 / Indag. math. 14, 327–333.

    MathSciNet  Google Scholar 

  • Wegman, E.J. (1970). Maximum likelihood estimation of a unimodal density function. Ann. Math. Statist. 41, 457–471.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dykstra, R., Robertson, T., Wright, F.T. (1986). Introduction. In: Dykstra, R., Robertson, T., Wright, F.T. (eds) Advances in Order Restricted Statistical Inference. Lecture Notes in Statistics, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9940-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9940-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96419-5

  • Online ISBN: 978-1-4613-9940-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics