The Interrelationships among Folate, Vitamin B12, and Methionine Metabolism

  • Barry Shane
  • E. L. Robert Stokstad
Part of the Advances in Nutritional Research book series (ANUR)


The interrelationship between vitamin B12 and folate metabolism in man is best illustrated by the hematologically indistinguishable, macrocytic megaloblastic anemia resulting from a deficiency of either vitamin. Large pharmacological doses of either vitamin will elicit a hematological response in patients suffering from a deficiency of either or even both vitamins (Marshall and Jandl, 1960; Zalusky et al., 1962). For instance, large doses of folate cause a temporary or partial hematological remission in pernicious anemia patients but fail to correct the neurological lesions that arise from prolonged vitamin B12 deprivation.


Methylenetetrahydrofolate Reductase Megaloblastic Anemia Folate Metabolism Methionine Metabolism Thymidylate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammes, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. G., and Mollin, D. L., 1978, Megaloblastic haemopoiesis in patients receiving nitrous oxide, Lancet 2: 339.Google Scholar
  2. Arakawa, T., 1970, Congenital defects in folate utilization, Am. J. Med. 48: 594.Google Scholar
  3. Baggott, J. E., and Krumdieck, C. L., 1979, Folylpoly-y-glutamates as cosubstrates of 10-formyltetrahydrofolate: 5’-Phosphoribosyl-5-amino-4-imidazole-carboxamide formyltransferase, Biochemistry 18: 1036.Google Scholar
  4. Banks, R. G. S., Henderson, R. J., and Pratt, J. M., 1968, Reactions of gases in solution. III. Some reactions of nitrous oxide with transition-metal complexes, J. Chem. Soc. A 1968: 2886.Google Scholar
  5. Batra, K. K., Watson, J. E., and Stokstad, E. L. R., 1979, Effect of dietary thyroid powder on urinary excretion of formiminoglutamic acid and methylmalonic acid, Proc. Soc. Exp. Biol. Med. 161: 589.Google Scholar
  6. Baugh, C. M., Braverman, E., and Nair, M. G., 1974, The identification of poly-y-glutamyl chain lengths in bacterial folates, Biochemistry 13: 4952.Google Scholar
  7. Beck, W. S., 1972, Erythrocyte disorders-anemias related to disturbance of DNA synthesis (megaloblastic anemias), in: Hematology (W. J. Williams, E. Buetler, A. J. Erslev, and R. W. Rundles, eds.), p. 249, McGraw-Hill, New York.Google Scholar
  8. Beck, W. S., 1975, Metabolic features of cobalamin deficiency in man, in: Cohalamin: Biochemistry and Pathophysiology ( B. M. Babior, ed.), p. 403, Wiley, New York.Google Scholar
  9. Betheil, J. J., and Lardy, H. A., 1949, Comparative effectiveness of vitamin B12, whole liver substance and extracts high in APA activity, as growth promoting materials for hyperthyroid animals, J. Nutr. 37: 495.Google Scholar
  10. Blackburn, R., Kyaw, M., and Swallow, A. J., 1977, Reactions of cob(I)alamin with nitrous oxide and cob(IlI)alamin, J. Chem. Soc. Faraday Trans. 73: 250.Google Scholar
  11. Blakley, R. L., 1969, The biochemistry of folic acid and related pteridines, in: Frontiers of Biology, Vol. 13 (A. Neuberger, and E. L. Tatum, eds.), North-Holland, Amsterdam.Google Scholar
  12. Bloomer, J., and Stokstad, E. L. R., 1977, Folate metabolism in isolated hepatocytes, Fed. Proc. 36: 1120.Google Scholar
  13. Brody, T., Shane, B., and Stokstad, E. L. R., 1982, Folic acid, in: Handbook on Vitamins (J. L. Machlin, ed.), Dekker, New York, in press.Google Scholar
  14. Broquist, H. P., 1956, Evidence for the excretion of formiminoglutamic acid following folic acid antagonist therapy in acute leukemia, J. Am. Chem. Soc. 78: 6205.Google Scholar
  15. Brothers, V., Rowley, B. O., and Genitsen, T., 1975, Oxidation of compounds metabolized through folate coenzyme pathways in vitamin B12-deficient rats, Arch. Biochem. Biophys. 166: 475.Google Scholar
  16. Brown, D. D., Silva, O. L., Gardiner, R. C., and Silverman, M., 1960, Metabolism of formiminoglutamic acid by vitamin B12 and folic acid-deficient rats fed excess methionine, J. Biol. Chem. 235: 2058.Google Scholar
  17. Brown, J. P., Davidson, G. E., and Scott, J. M., 1974, The identification of the forms of folate found in the liver, kidney, and intestine of the monkey and their biosynthesis from exogeneous pteroylglutamate (folic acid), Biochim. Biophys. Acta 343: 78.Google Scholar
  18. Buehring, K. U., Batra, K. K., and Stokstad, E. L. R., 1972, The effect of methionine on folic acid and histidine metabolism in perfused rat liver, Biochim. Biophys. Acta 279: 498.Google Scholar
  19. Buehring, K. U., Tamura, T., and Stokstad, E. L. R., 1974, Folate coenzymes of Lactobacillus casei and Streptococcus faecalis, J. Biol. Chem. 249: 1081.Google Scholar
  20. Burton, E. G., and Metzenberg, R. L., 1975, Regulation of methionine biosynthesis in Neurospora crassa, Arch. Biochem. Biophys. 168: 219.Google Scholar
  21. Cantoni, G. L., Richards, H. H., and Chiang, P. K., 1979, Inhibitors of S-adenosylhomocysteine hydrolase and their role in the regulation of biological methylation, in: Transmethylation ( E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), p. 155, Elsevier, New York.Google Scholar
  22. Caperelli, C. A., Benkovic, P. A., Chettor, G., and Benkovic, S. J., 1980, Purification of a complex catalyzing folate cofactor synthesis and transformylation in de novo purine biosynthesis, J. Biol. Chem. 255: 1885.Google Scholar
  23. Chan, M. M-S., and Stokstad, E. L. R., 1980, Metabolic responses of folic acid and related compounds to thyroxine in rats, Biochim. Biophys. Acta 632: 244.Google Scholar
  24. Chanarin, I., Perry, J., and Lumb, M., 1974, The biochemical lesion in vitamin B12 deficiency in man, Lancet 1: 1251.Google Scholar
  25. Cheng, F. W., Shane, B., and Stokstad, E. L. R., 1975a, Pentaglutamate derivatives of folate as substrates for rat liver tetrahydropteroylglutamate methyltransferase and 5,10-methylenetetrahydrofolate reductase, Can. J. Biochem. 53: 1020.Google Scholar
  26. Cheng, F. W., Shane, B., and Stokstad, E. L. R., 19756, The anti-folate effect of methionine on bone marrow of normal and vitamin B12 deficient rats, Br. J. Haematol. 31: 323.Google Scholar
  27. Chiao, F., and Stokstad, E. L. R., 1977, Effect of methionine on the metabolism of formate and histidine by rats fed folate/vitamin B12-methionine-deficient diet, Biochim. Biophys. Acta 497: 225.Google Scholar
  28. Cichowicz, D. J., Foo, S. K., and Shane, B., 1981, Folylpolyglutamate synthesis by bacteria and mammalian cells, Mol. Cell. Biochem. 39: 209.Google Scholar
  29. Cohen, L., and MacKenzie, R. E., 1978, Methylenetetrahydrofolate dehydrogenase-methyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase from porcine liver. Interaction between the dehydrogenase and cyclohydrolase activities of the multifunctional enzyme, Biochim. Biophys. Acta 522: 311.Google Scholar
  30. Covey, J. M., 1980, Polyglutamate derivatives of folic acid coenzymes and methotrexate, Life Sci. 26: 665.Google Scholar
  31. Coward, J. K., Paraswaran, N. K., Cashmore, A. R., and Bertino, J. R., 1974, 7,8-Dihydropteroyloligo-y-L-glutamates: Synthesis and kinetic studies with purified dihydrofolate reductase from mammalian sources, Biochemistry 13: 3899.Google Scholar
  32. Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, K. N., DeAngelis, L. M., and Bertino, J. R., 1975, 5-Methyl-5,6,7,8-tetrahydropteroyl oligo-y-L-glutamates: Synthesis and kinetic studies with methionine synthetase from bovine brain, Biochemistry 14: 1548.Google Scholar
  33. Curthoys, N. P., and Rabinowitz, J. C., 1972, Formyltetrahydrofolate synthetase. Binding of folate substrates and kinetics of the reverse reaction, J. Biol. Chem. 247: 1965.Google Scholar
  34. Das, K. C., and Herbert, V., 1976, Vitamin B12-folate interrelations, Clin. Haematol. 5:697. Das, K. C., and Hoffbrand, A. V., 1970, Lymphocyte transformation in megaloblastic anemia: Morphology and DNA synthesis, Br. J. Haematol. 19: 459.Google Scholar
  35. Davidson, G. E., Weir, D. G., and Scott, J. M., 1975, The metabolic consequences of vitamin B12 methionine deficiency in rats, Biochim. Biophys. Acta 392: 207.Google Scholar
  36. Deacon, R., Lumb, M., Muir, M., Perry, J., and Chanarin, I., 1979, Studies on cobalamin and folate metabolism in rats exposed to nitrous oxide (N2O), in: Vitamin B12 (B. Zagalak and W. Friedrich, eds.), p. 1055, deGruyter, New York.Google Scholar
  37. Deacon, R., Chanarin, I., Perry, J., and Lumb, M., 1980, Impaired deoxyuridine utilization in the B 12-inactivated rat and its correction by folate analogues, Biochem. Biophys. Res. Commun. 93: 516.Google Scholar
  38. Dillon, M. J., England, J. M., Gompertz, D., Goodney, P. A., Grant, D. B., Hussein, H. A. A., Linnell, J. C., Matthews, D. M., Mudd, S. H., Newns, G. H., Seakins, J. W. T., Uhlendorf, B. W., and Wise, I. J., 1974, Mental retardation, megaloblastic anemia, methylmalonic acid-uria and abnormal homocysteine metabolism due to an error in vitamin Bit metabolism, Clin. Sci. Mol. Med. 47: 43.Google Scholar
  39. Dolnick, B. J., and Cheng, V-C., 1978, Human thymidylate synthetase. II. Derivatives of pteroylmono-and polyglutamates as substrates and inhibitors, J. Biol. Chem. 253: 3563.Google Scholar
  40. Ellims, P. H., Hayman, R. J., and Van der Weyden, M. B., 1979, Expression of fetal thymidine kinase in human cobalamin or folate deficient lymphocytes, Biochem. Biophys. Res. Commun. 89: 103.Google Scholar
  41. Finkelstein, J. D., 1979, Regulation of methionine metabolism in mammals, in: Transmethylation ( E. Usdin, R. T. Borchardt, and C. R. Creveling, eds.), p. 49, Elsevier, New York.Google Scholar
  42. Finklestein, J. D., Martin, J. J., Kyle, W. E., and Harris, B. J., 1978, Methionine metabolism in mammals: Regulation of methylenetetrahydrofolate reductase content of rat tissue, Arch. Biochem. Biophys. 191: 153.Google Scholar
  43. Foo, S. K., McSloy, R. M., Rousseau, C., and Shane, B., 1982, Folate derivatives in human cells. Studies on normal and 5,10-methylenetetrahydrofolate reductase-deficient fibroblasts, J. Nutr. 112: 1600.Google Scholar
  44. Freeman, J. M., Finkelstein, J. D., and Mudd, S. H., 1975, Folate responsive homocystinuria and schizophrenia. A defect in methylation due to deficient 5,10-methylenetrahydrofolate reductase activity, N. Engl. J. Med. 292: 491.Google Scholar
  45. Friedkin, M., Plante, L. T., Crawford, E. J., and Crumm, M., 1975, Inhibition of thymidylate synthetase and dihydrofolate reductase by naturally occurring oligoglutamate derivatives of folic acid, J. Biol. Chem. 250: 5614.Google Scholar
  46. Fujii, K., 1979, Folate and cobabamin interrelationships in mouse leukemia L1210 cells, in: Chemistry and Biology of Pteridines ( R. L. Kisliuk and G. M. Brown, eds.), p. 297, Elsevier, New York.Google Scholar
  47. Fujii, K., Nagasaki, T., and Huennekens, F. M., 1981, Vitamin B12-dependent replication of L1210 mouse leukemia cells. A model system for cobalamin-folate interrelationships, J. Biol. Chem. 256: 10329Google Scholar
  48. Fujii, K., Nagasaki, T., and Huennekens, F. M., 1982, Accumulation of 5-methyltetrahydrofolate in cobalamin-deficient L1210 mouse leukemia cells, J. Biol. Chem. 257: 2144.Google Scholar
  49. Gawthorne, J. M., and Smith, R. M., 1973, The synthesis of pteroylpolyglutamates by sheep liver enzymes in vitro, Biochem. J. 136: 295.Google Scholar
  50. Gawthorne, J. M., and Smith, R. M., 1974, Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on methotrexate transport and the activity of enzymes associated with folate metabolism in liver, Biochem. J. 142: 119.Google Scholar
  51. Gawthorne, J. M., and Stokstad, E. L. R., 1971, The effect of vitamin B12 and methionine on folic acid uptake by rat liver, Proc. Soc. Exp. Biol. Med. 136: 42.Google Scholar
  52. Hartman, A. M., and Dryden, L. P., 1960, Relation of Vitamin B12 to Metabolism of Protein Fed at High Levels, Fifth International Congress on Nutrition, p. 61.Google Scholar
  53. Hatch, F. T., Larrabee, A. R., Cathou, R. E., and Buchanan, J. M., 1961, Enzymatic synthesis of the methyl group of methionine. I. Identification of the enzymes and cofactors involved in the system isolated from Escherichia coli, J. Biol. Chem. 236: 1095.Google Scholar
  54. Herbert, V., and Das, K. C., 1976, The role of vitamin B12 and folic acid in hemato-and other cellpoiesis, Vitam. Horm. 34: 1.Google Scholar
  55. Herbert, V., and Zalusky, R., 1961, Pteroylglutamic acid (PGA) clearance after intravenous injection: Studies using two microbiologic assay organisms, Clin. Res. 9: 161.Google Scholar
  56. Herbert, V., and Zalusky, R., 1962, Interrelations of vitamin B12 and folic acid metabolism: Folic acid clearance studies, J. Clin. Invest. 41: 1263.Google Scholar
  57. Herbert, V., Larrabee, A. B., and Buchanan, J. M., 1962, Studies on the identification of a folate compound of human serum, J. Clin. Invest. 41: 1134.Google Scholar
  58. Herbert, V., Streiff, R. R., Sullivan, L. W., and McGeer, P. L., 1964, Deranged purine metabolism manifested by aminoimidazole carboxamide excretion in megaloblastic anemias, haemolytic anemia and liver disease, Lancet 2: 45.Google Scholar
  59. Hoffbrand, A. V., Ganeshaguru, K., Hooton, J. W. L., and Tripp, E., 1976, Megaloblastic anaemia: Initiation of DNA synthesis in excess of DNA chain elongation as the underlying mechanism, Clin. Haematol. 5: 727.Google Scholar
  60. Home, D. W., and Briggs, W. T., 1980, Effect of dietary and nitrous oxideinduced vitamin B12 deficiency on uptake of 5-methyltetrahydrofolate by isolated hepatocytes, J. Nutr. 110: 223.Google Scholar
  61. Home, D. W., and Wagner, C., 1979, Studies on the transport of 5-methyltetrahydrofolate and related compounds into isolated hepatocytes, in: The Chemistry and Biology of Pteridines ( R. L. Kisliuk, and G. M. Brown, eds.), p. 555, Elsevier, New York.Google Scholar
  62. Houlihan, C. M., and Scott, J. M., 1972, The identification of pteroylpenta-glutamate as the major folate derivative in rat liver and the demonstration of its biosynthesis from exogenous [3H]pteroylglutamate, Biochem. Biophys. Res. Commun. 48: 1675.Google Scholar
  63. Kamely, D., Littlefield, J. W., and Erbe, R. W., 1973, Regulation of 5-methyltetrahydrofolate: Homocysteine methyltransferase activity by methionine vitamin B12, and folate in cultured baby hamster kidney cells, Proc. Natl. Acad. Sci. USA 70: 2585.Google Scholar
  64. Katzen, H. M., and Buchanan, J. M., 1965, Enzymatic synthesis of the methyl group of methionine. VIII. Repression-repression, purification, and properties of 5,10-methylenetetrahydrofolate reductase from E. coli, J. Biol. Chem. 240: 825.Google Scholar
  65. Killman, S. A., 1964, Effect of deoxyuridine on incorporation of tritiated thymidine; difference between normoblasts and megaloblasts, Acta Med. Scand. 175: 483.Google Scholar
  66. Kisliuk, R. L., 1981, Pteroylpolyglutamates, Mol. Cell. Biochem. 39: 331.Google Scholar
  67. Kisliuk, R. L., Gaumont, Y., and Baugh, C. M., 1974, Polyglutamyl derivatives of folate as substrates and inhibitors of thymidylate synthetase, J. Biol. Chem. 249: 4100.Google Scholar
  68. Knowles, J. P., and Prankerd, T. A. J., 1962, Abnormal folic acid metabolism in vitamin B12 deficiency, Clin. Sci. 22: 233.Google Scholar
  69. Koblin, D. D., Watson, J. E., Deady, J. E., Stokstad, E. L. R., and Eger, E. I., 1981, Inactivation of methionine synthetase by nitrous oxide in mice, Anesthesiology 54: 318.Google Scholar
  70. Krebs, H. E., Hems, R., and Tyler, B., 1976, The regulation of folate and methionine metabolism, Biochem. J. 158: 341.Google Scholar
  71. Kutzbach, C., and Stokstad, E. L. R., 1967, Feedback inhibition of methylenetetrahydrofolate reductase in rat liver by S-adenosylmethionine, Biochim. Biophys. Acta 139: 217.Google Scholar
  72. Kutzbach, C., and Stokstad, E. L. R., 1968, Partial purification of a 10-formyl-tetrahydrofolate: NADP oxidoreductase from mammalian liver, Biochem. Biophys. Res. Commun. 30: 111.Google Scholar
  73. Kutzbach, C., and Stokstad, E. L. R., 1971, Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by S-adenosylmethionine, Biochim. Biophys. Acta 250: 459.Google Scholar
  74. Kutzbach, C., Galloway, E., and Stokstad, E. L. R., 1967, Influence of vitamin B12 and methionine on levels of folic acid compounds and folate coenzymes in rat liver, Proc. Soc. Exp. Biol. Med. 124: 801.Google Scholar
  75. Lassen, H. C. A., Henrickson, E., Neukirch, F., and Kristensen, H. S., 1956, Treatment of tetranus. Severa bone-marrow depression after prolonged nitrous-oxide anasthesia, Lancet 1: 527.Google Scholar
  76. LaVoie, A., Tripp, E., and Hoffbrand, A. V., 1974, The effect of vitamin B12 deficiency on methylfolate metabolism and pteroylpolyglutamate synthesis in human cells, Clin. Sci. Mol. Med. 47: 617.Google Scholar
  77. LaVoie, A., Tripp, E., Parsan, K., and Hoffbrand, A. V., 1975, Polyglutamate forms of folate in resting and proliferating mammalian tissues, Clin. Sci. Mol. Med. 48: 67.Google Scholar
  78. Leslie, G. I., and Baugh, C. M., 1974, The uptake of pteroyl[I4C]glutamate into rat liver and its incorporation into the natural pteroyl poly-y-glutamates of that organ, Biochemistry 13: 4957.Google Scholar
  79. Luhby, A. L., and Cooperman, J. M., 1962, Aminoimidazolecarboxamide excretion in vitamin B12 and folic-deficiencies, Lancet 2: 1381.Google Scholar
  80. Lumb, M., Deacon, R., Perry, J., Chanarin, E., Minty, B., Halsey, M. J., and Nunn, J. F., 1980, The effect of nitrous oxide inactivation of vitamin B12 on rat hepatic folate, Biochem. J. 186: 933.Google Scholar
  81. MacKenzie, R. E., 1979, Formiminotransferase-cyclodeaminase, a bifunctional protein from pig liver, in: Chemistry and Biology of Pteridines ( R. L. Kisliuk and G. M. Brown, eds.), p. 443, Elsevier, New York.Google Scholar
  82. Marshall, R. A., and Jandl, J. H., 1960, Responses to physiological doses of folic acid in the megaloblastic anemias, Arch. Int. Med. 105: 352.Google Scholar
  83. Matthews, R. G., and Baugh, C. M., 1980, Interactions of pig liver methylenetetrahydrofolate reductase with methylenetetrahydropteroylpolyglutamate substrates and with dihydropteroylpolyglutamate inhibitors, Biochemistry 19: 2040.Google Scholar
  84. Matthews, R. G., and Kaufman, S., 1980, Characterization of the dihydropterin reductase activity of pig liver methylenetetrahydrofolate reductase, J. Biol. Chem. 255: 6014.Google Scholar
  85. McBurney, M. W., and Whitmore, G. F., 1974, Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells, Cell 2: 173.Google Scholar
  86. McGeer, P. L., Sen, N. P., and Grant, D. A., 1965, Excretion of 4(S)-amino-5(4)-imidazolecarboxamide and formimino-L-glutamic acid in folic acid and vitamin B12 deficient rats, Can. J. Biochem. 43: 1367.Google Scholar
  87. McGing, P. G., and Scott, J. M., 1980, The role of methionine and vitamin B12 in folate incorporation by rat liver, Br. J. Nutr. 43: 235.Google Scholar
  88. McGing, P., Reed, B., Weir, D. G., and Scott, J. M., 1978, The effect of vitamin B72 inhibition in vivo: Impaired folate polyglutamate biosynthesis indicating that 5-methyltetrahydropteroylglutamate is not its usual substrate, Biochem. Biophys. Res. Commun. 82: 540.Google Scholar
  89. McGuire, J. J., and Bertino, J. R., 1981, Enzymatic synthesis and function of folylpolyglutamates, Mol. Cell Biochem. 38: 19.Google Scholar
  90. McGuire, J. J., Hsieh, H., Coward, J. K., and Bertino, J. R., 1980, Enzymatic synthesis of folylpolyglutamates. Characterization of the reaction and its products, J. Biol. Chem. 255: 5776.Google Scholar
  91. Meller, E., Rosengarten, H., Friedhoff, A. J., Stebbins, R. D., and Silver, R., 1975, 5-methyltetrahydrofolic acid is not a methyl donor for biogenic amines: Enzymatic formation of formaldehyde, Science 187: 171.Google Scholar
  92. Metz, J., Kelly, A., Swett, V. C., and Waxman, S., and Herbert, V., 1968, Deranged DNA synthesis by bone marrow from vitamin B12-deficient humans, Br. J. Haematol. 14: 575.Google Scholar
  93. Moran, R. G., Werkheiser, W. C., and Zakrzewski, S. F., 1976, Folate metabolism in mammalian cells in culture. I. Partial characterization of the folate derivatives present in L1210 mouse leukemia cells, J. Biol. Chem. 251: 3569.Google Scholar
  94. Murphy, M., Keating, M., Boyle, P., Weir, D. G., and Scott, J. M., 1976, The elucidation of the mechanism of folate catabolism in the rat, Biochem. Biophys. Res. Commun. 71: 1017.Google Scholar
  95. Navalgund, L. G., Rossana, C., Muench, A. J., and Johnson, L. F., 1980, Cell cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts, J. Biol. Chem. 255: 7386.Google Scholar
  96. Nixon, P. F., and Bertino, J. R., 1970, Interrelationships of vitamin B12 and folate in man, Am. J. Med. 48: 555.Google Scholar
  97. Nixon, P. F., and Bertino, J. R., 1972, Impaired utilization of serum folate in pernicious anemia: A study with radiolabeled 5-methyltetrahydrofolate, J. Clin. Invest. 51: 1431.Google Scholar
  98. Nixon, P. F., Slutsky, G., Nahas, A., and Bertino, J. R. 1973, The turnover of folate coenzymes in murine lymphoma cells, J. Biol. Chem. 248: 5932.Google Scholar
  99. Noronha, J. M., and Silverman, M., 1962, On folic acid, vitamin B12, methionine, and formiminoglutamate metabolism, in: Vitamin B12 and Intrinsic Factor, 2nd European Symposium ( H. C. Heinrich, ed.), p. 728, Verlag, Stuttgart.Google Scholar
  100. Oace, S. M., Tarczy-Homoch, K., and Stokstad, E. L. R., 1968, Urinary aminoimidazolecarboxamide in the rat as influenced by dietary vitamin B12, methionine and thyroid powder, J. Nutr. 95: 445.Google Scholar
  101. Paukert, J. L., Straus, L. D., and Rabinowitz, J. C., 1976, Formyl-methenylmethylenetetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities, J. Biol. Chem. 251: 5104.Google Scholar
  102. Pelliniemi, T-T., and Beck, W. S., 1980, Biochemical mechanisms in the Killman experiment: Critique of the “deoxyuridine suppression test,” J. Clin. Invest. 65: 449.Google Scholar
  103. Perry, J., and Chanarin, I., 1977, Abnormal folate polyglutamate ratios in untreated pernicious anaemia corrected by therapy, Br. J. Haematol. 35: 397.Google Scholar
  104. Perry, J., Chanarin, I., Deacon, R., and Lumb, M., 1979a, The substrate for folate polyglutamate biosynthesis in the vitamin B12-inactivated rat, Biochem. Biophys. Res. Commun. 91: 678.Google Scholar
  105. Perry, J., Lumb, M., Van der Westhuyzen, J., Fernandes-Costa, F., Metz, J., and Chanarin, I., 1979b, The methyltetrahydrofolate pool is separate from the tetrahydrofolate pool, in: Chemistry and Biology of Pteridines ( R. L. Kisliuk and G. M. Brown, eds.), p. 315, Elsevier, New York.Google Scholar
  106. Poston, J. M., 1980, Cobalamin-dependent formation of leucine and fl-leucine by rat and human tissue, J. Biol. Chem. 255: 10067.Google Scholar
  107. Powers, S. G., and Snell, E. E., 1976, Ketopantoate hydroxymethyltransferase. II. Physical, catalytic, and regulatory properties, J. Biol. Chem. 251: 3786.Google Scholar
  108. Quandros, E. V., Jackson, B., Hoffbrand, A. V., and Linell, J. C., 1979, Interconversion of cobalamins in human lymphocytes in vitro and the influence of nitrous oxide on the synthesis of cobalamin coenzymes, in: Vitamin B12 (B. Zagalak and W. Friedrich, eds.), p. 1045, de Gruyter, New York.Google Scholar
  109. Rabinowitz, J. C., and Tabor, M., 1958, The urinary excretion of formic acid and formiminoglutamit acid in folic acid deficiency, J. Biol. Chem. 233: 252.Google Scholar
  110. Rader, J. I., and Huennekens, F. M., 1973, Folate coenzyme-mediated transfer of one-carbon groups, in: The Enzymes, Vol. 9, (P. D. Boyer, ed.), 3rd ed., Academic Press, New York.Google Scholar
  111. Reddy, G. P., and Pardee, A. B., 1980, Multienzyme complex for metabolic channeling in mam-malian DNA replication, Proc. Natl. Acad. Sci. USA 77: 3312.Google Scholar
  112. Register, U. D., Ruegamer, W. R., and Elvehjem, C. A., 1949, An improved assay for a growth factor in liver extracts, J. Biol. Chem. 177: 129.Google Scholar
  113. Rode, W., Scanlon, K. J., Moroson, B. A., and Bertino, J. R., 1980, Regulation of thymidylate synthetase in mouse leukemia cells (L1210), J. Biol. Chem. 255: 1305.Google Scholar
  114. Rosenblatt, D. S., Cooper, B. A., Leu-Shing, S., Wong, P. W. K., Berlow, S., Narisawa, K., and Baumgartner, R., 1979, Folate distribution in cultured human cells, J. Clin. Invest. 63: 1019.Google Scholar
  115. Rowe, P. B., 1978, Inherited disorders of folate metabolism. in: The Molecular Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), 4th ed., chap. 22, p. 430, McGraw—Hill, New York.Google Scholar
  116. Rowe, P. B., McCaims, E., Madsen, G., Sauer, D., and Elliot, H., 1978, De novo purine synthesis in avian liver. Co-purification of the enzymes and properties of the pathway, J. Biol. Chem. 253: 7711.Google Scholar
  117. Rundles, W. R., and Brewer, S. S., 1958, Haematologic responses in pernicious anemia to orotic acid, Blood 13: 99.Google Scholar
  118. Sakamoto, S., Niina, M., and Takuku, F., 1975, Thymidylate synthetase activity in bone marrow cells in pernicious anemia, Blood 46: 699.Google Scholar
  119. Salem, A. R., Pattison, J. R., and Foster, M. A., 1972, Folic acid and the methylation of homocysteine by Bacillus subtilis, Biochem. J. 126: 993.Google Scholar
  120. Sauer, H., and Wilmanns, W., 1977, Cobalamin dependent methionine synthesis and methylfolatetrap in human vitamin B12 deficiency, Br. J. Haematol. 36: 189.Google Scholar
  121. Scott, J. M., and Weir, D. G., 1981, The methyl trap hypothesis. A physiological response in man to prevent methyl group deficiency in kwashiorkor (methionine deficiency) and an explanation for folic-acid-induced exacerbation of subacute combined degeneration in pernicious anemia, Lancet 2: 337.Google Scholar
  122. Scott, J. M., Reed, B., McKenna, B., McGing, P., McCann, S., O’Sullivan, H., Wilson, P., and Weir, D. G., 1979, A study of the multiple changes induced in vivo in experimental animals by inactivation vitamin B12 using nitrous oxide, in: Chemistry and Biology of Pteridines ( R. L. Kisliuk and G. M. Brown, eds.), p. 335, Elsevier, New York.Google Scholar
  123. Scott, J. M., Dinn, J. J., Wilson, P., and Weir, D. G., 1981, Pathogenesis of subacute combined degeneration: a result of methyl group deficiency, Lancet 2: 334.Google Scholar
  124. Scrutton, M. C., and Beis, I., 1979, Inhibitory effects of histidine and their reversal. The roles of pyruvate carboxylase and Nlo-formyltetrahydrofolate dehydrogenase, Biochem. J. 177: 833.Google Scholar
  125. Shane, B., 1980, Pteroylpolyglutamate synthesis by Corynebacterium species. Purification and properties of folylpolyglutamate synthetase, J. Biol. Chem. 255: 5655.Google Scholar
  126. Shane, B., 1982, Corynebacterium sp. folylpolyglutamate synthetase, in: Peptide Antibiotics and Bioactive Peptides—Biosynthesis and Functions (H. Kleinkauf and H. Döhren, eds.), pp. 353–368, Walter de Gruyter, New York.Google Scholar
  127. Shane, B., and Stokstad, E. L. R., 1975, Transport and metabolism of folates by bacteria, J. Biol. Chem. 250: 2243.Google Scholar
  128. Shane, B., and Stokstad, E. L. R., 1976, Transport and utilization of methyltetrahydrofolates by Lactobacillus casei, J. Biol. Chem. 251: 3405.Google Scholar
  129. Shane, B., and Stokstad, E. L. R., 1977a, Rate-limiting steps in folate metabolism by Lactobacillus casei, J. Gen. Microbiol. 103: 261.Google Scholar
  130. Shane, B., and Stokstad, E. L. R., 1977b, Metabolism of 5-methyltetrahydrofolate by Lactobacillus casei, J. Gen. Microbiol. 103: 249.Google Scholar
  131. Shane, B., Brody, T., and Stokstad, E. L. R., 1977a, Folate metabolism in the vitamin B12- and methionine-deficient rat, Fed. Proc. 36: 1120.Google Scholar
  132. Shane, B., Watson, J. E., and Stokstad, E. L. R., 1977b, Uptake and metabolism of [3H]folate by normal and by vitamin B12- and methionine-deficient rats, Biochim. Biophys. Acta 497: 241.Google Scholar
  133. Shin, Y. S., Williams, M. A., and Stokstad, E. L. R., 1972, Identification of folic acid compounds in rat liver, Biochem. Biophys. Res. Commun. 47: 35.Google Scholar
  134. Shin, Y. S., Buehring, K. U., and Stokstad, E. L. R., 1975, The relationships between vitamin B12 and folic acid and the effect of methionine on folate metabolism, Mol. Cell. Biochem. 9: 97.Google Scholar
  135. Silverman, M., and Pitney, A. J., 1958, Dietary methionine and the excretion of formiminoglutamic acid by the rat, J. Biol. Chem. 233: 1958.Google Scholar
  136. Smith, G. K., Mueller, W. T., Wasserman, G. F., Taylor, W. D., and Benkovic, S. J., 1980, Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis, Biochemistry 19: 4313.Google Scholar
  137. Smith, R. M., and Osborne-White, W. S., 1973, Folic acid metabolism in vitamin 1312-deficient sheep. Depletion of liver folates, Biochem. J. 136: 279.Google Scholar
  138. Smith, R. M., Osborne-White, W. S., and Gawthorne, J. M., 1974, Folic acid metabolism in vitamin B12-deficient sheep. Effects of injected methionine on liver constituents associated with folate metabolism, Biochem. J. 142: 105.Google Scholar
  139. Smith, G. K., Benkovic, P. A., and Benkovic, S. J., 1981, L(-)-10-Formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver, Biochemistry 20: 4034.Google Scholar
  140. Spronk, A. M., 1973, Tetrahydrofolate polyglutamate synthesis in rat liver, Fed Proc. 34: 471.Google Scholar
  141. Stokstad, E. L. R., 1968, Experimental anemias in animals resulting from folic acid and vitamin B12 deficiencies, Vitam. Horm. 26: 443.Google Scholar
  142. Stokstad, E. L. R., 1976, Vitamin B12 and folic acid, in: Present Knowledge in Nutrition, 4th ed., p. 204, Nutrition Foundation, New York.Google Scholar
  143. Stokstad, E. L. R., 1977, Regulation of folate metabolism by vitamin B12, in: Folic Acid: Biochemistry and Physiology in Relation to the Human Nutrition Requirement, p. 122, National Research Council, National Academy of Sciences, Washington, D.C.Google Scholar
  144. Stokstad, E. L. R., Webb, R. E., and Shah, E., 1966, Effect of vitamin B12 and folic acid on the metabolism of formiminoglutamate, formate, and propionate in the rat, J. Nutr. 88: 225.Google Scholar
  145. Stokstad, E. L. R., Chan, M. S-S., and Bloomer, J. E., 1979a, The effects of thyroxine on folate and histidine metabolism, in: The Chemistry and Biology of Pteridines ( R. L. Kisliuk and G. M. Brown, eds.), p. 603, Elsevier, New York.Google Scholar
  146. Stokstad, E. L. R., Chen, M. M-S., Watson, J. E., Brody, T., and Jaenicke, L., 1979b, The effects of hypothyroidism on histidine oxidation and folate-dependent enzyme levels, in: Vitamin B 12 : Proceedings of the Third European Symposium on Vitamin B12 and Intrinsic Factor (B. Zagalak, and W. Freidrich, eds.), p. 1139, de Gruyter, Berlin.Google Scholar
  147. Stokstad, E. L. R., Chan, M. M-S., Watson, J. E., and Brody, T., 1980, Nutritional interactions of vitamin B12, folic acid, and throxine, Ann. N.Y. Acad. Sci. 355: 119.Google Scholar
  148. Suresh, M. R., Henderson, G. B., and Huennekens, F. M., 1979, Folate uptake in L1210 cells: Mediated by an adenine transport system, Biochem. Biophys. Res. Commun. 87: 135.Google Scholar
  149. Tan, L. U. L., Drury, E. J., and MacKenzie, R. E., 1977, Methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase. A multifunctional protein from porcine liver, J. Biol. Chem. 252: 1117.Google Scholar
  150. Taylor, R. T., and Hanna, M. L., 1975, Folate dependent enzymes in cultured Chinese hamster ovary cells: Induction of 5-methyltetrahydrofolate homocysteine cobalamin methyltransferase by folate and methionine, Arch. Biochem. Biophys. 171: 507.Google Scholar
  151. Taylor, R. T., and Hanna, M. L., 1977, Folate-dependent enzymes in cultured Chinese hamster cells: Folylpolyglutamate synthetase and its absence in mutants auxotrophic for glycine + adenosine + thymidine, Arch. Biochem. Biophys. 181: 331.Google Scholar
  152. Taylor, R. T., and Hanna, M. L., 1979, Folate-dependent enzymes in cultured Chinese hamster cells: Evidence for mutant forms of folylpolyglutamate synthetase, Arch. Biochem. Biophys. 197: 36.Google Scholar
  153. Taylor, R. T., and Weissbach, H., 1973, N5-methyltetrahydrofolate-homocysteine methyltransferases, in: The Enzymes, Vol. 9 ( P. D. Boyer, ed.), 3rd ed., p. 121, Academic Press, New York.Google Scholar
  154. Taylor, R. T., Hanna, M. L., and Hutton, J. J., 1974, 5-methyltetrahydrofolate homocysteine cobalamin methyltransferase in human bone marrow and its relationship to pernicious anemia, Arch. Biochem. Biophys. 165: 787.Google Scholar
  155. Thenen, S. W., and Stokstad, E. L. R., 1973, Effect of methionine on specific folate coenzyme pools in vitamin B12 deficient and supplemented rats, J. Nutr. 103: 363.Google Scholar
  156. Thorndike, J., and Beck, W. S., 1977, Production of formaldehyde from N5-methyltetrahydrofolate by normal and leukemic leukocytes, Cancer Res. 37: 1125.Google Scholar
  157. Tisman, G., and Herbert, V., 1973, B12 dependence of cell uptake of serum folate: An explanation for high serum folate and cell folate depletion in B12 deficiency, Blood 41: 465.Google Scholar
  158. Van der Weyden, M. B., Cooper, M., and Firkin, B. G., 1973, Defective DNA synthesis in human megaloblastic bone marrow: Effects of hydroxy-B12, 5’-deoxyadenosyl-B12 and methyl-B12, Blood 41: 299.Google Scholar
  159. Vidal, A. J., and Stokstad, E. L. R., 1974, Urinary excretion of 5-methyltetrahydrofolate and liver S-adenosylmethionine levels in rats fed a vitamin B12-deficient diet, Biochim. Biophys. Acta 362: 245.Google Scholar
  160. Waters, A. H., and Mollin, D. L., 1961, Studies on the folic acid activity of human serum, J. Clin. Pathol. 14: 335.Google Scholar
  161. Waters, A. H., and Mollin, D. L., 1963, Observations on the metabolism of folic acid in pernicious anaemia, Br. J. Haematol. 9: 319.Google Scholar
  162. Waxman, S., Metz, J., and Herbert, V., 1969, Defective DNA synthesis in human megaloblastic bone marrow: Effects of homocysteine and methionine, J. Clin. Invest. 48: 284.Google Scholar
  163. Whitfield, C. D., Steers, E. J., and Weissbach, H., 1970, Purification and properties of 5-meth-yltetrahydropteroyltriglutamate homocysteine transmethylase, J. Biol. Chem. 245: 390.Google Scholar
  164. Wittwer, A. J., and Wagner, C., 1980, Identification of folate binding protein of mitochondria as dimethylglycine dehydrogenase, Proc. Natl. Acad. Sci. USA 77: 4484.Google Scholar
  165. Zalusky, R., and Herbert, V., 1962, Urinary formiminoglutamic acid as a test of folic acid deficiency, Lancet 1: 108.Google Scholar
  166. Zalusky, R., Herbert, V., and Castle, W. B., 1962, Cyanocobalamin therapy effect in folic acid deficiency, Arch. Int. Med. 109: 545.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Barry Shane
    • 1
  • E. L. Robert Stokstad
    • 2
  1. 1.Department of Biochemistry, School of Hygiene and Public HealthThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Nutritional SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations