Advertisement

Nutrition and 3-Methylindole-Induced Lung Injury

  • James R. Carlson
  • Tammy M. Bray
Part of the Advances in Nutritional Research book series (ANUR)

Abstract

Damage to lung tissue can result from exposure to a variety of chemicals in the internal and external environment. Chemicals gain access to the lung through the large alveolar surface areas (1 m2/kg body wt.), in the case of inhaled agents, and the extensive perfusion of the lung with blood in the case of blood-borne chemicals (Witschi, 1976; Witschi and Cote, 1976, 1977). Chemicals that cause acute lung damage in man and animals include oxidants, heavy metals, and a variety of foreign chemicals present in cigarette smoke, diet, environmental pollution, and other sources. These chemicals can cause pulmonary injury by (1) direct effects, in which the parent compound is the toxic agent, or (2) after metabolic activation to toxic intermediates, metabolites, or products. Examples of chemicals in which the parent compound is the toxic agent include oxidants such as oxygen, ozone, and nitrogen dioxide (Witschi and Cote, 1977; Mustafa and Tierney, 1978). These chemicals generate free radicals, such as superoxide, singlet oxygen, or hydroxyl radicals, that cause lipid peroxidation and oxidation of other cellular components resulting in cytotoxicity to lung cells (McCord, 1979; Bus and Gibson, 1979).

Keywords

Lung Injury Reactive Intermediate Covalent Binding Acute Pulmonary Edema Pulmonary Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. M., 1975, Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography, J. Chromatogr. 105: 323.CrossRefGoogle Scholar
  2. Becking, G. C., 1978, Dietary minerals and drug metabolism, in: Nutrition and Drug Interrelations ( J. N. Hathcock and J. Coon, eds.), pp. 371–398, Academic Press, New York.CrossRefGoogle Scholar
  3. Boyd, M. R., 1976, Role of metabolic activation in the pathogenesis of chemically induced pulmonary disease: mechanism of action of the lung toxic furan, 4-ipomeanol, Environ. Health Perspect. 16: 127.CrossRefGoogle Scholar
  4. Bradley, B. J., 1977, Electron and Light Microscopy of Lungs and Body Distribution of 14C–3Methylindole in Experimentally Induced Pulmonary Edema and Emphysema in Goats, Ph.D. Thesis, Washington State University, Pullman.Google Scholar
  5. Bradley, B. J., and Carlson, J. R., 1980, Ultrastructural pulmonary changes induced by intravenously administered 3-methylindole in goats, Am. J. Pathol. 99: 551.Google Scholar
  6. Bradley, B. J., and Carlson, J. R., 1981, Concentration of 3-methylindole (3MI) and distribution of radioactivity from [14C]3MI in goat tissues associated with acute pulmonary edema, Life Sci. 30: 455.CrossRefGoogle Scholar
  7. Bradley, B. J., Carlson, J. R., and Dickinson, E. D., 1977, Light and scanning microscope observations of goat lungs following 3-methylindole infusion, in: Pulmonary Macrophage and Epithelial Cells, ERDA Symposium 43, pp. 590–602.Google Scholar
  8. Bradley, B. J., Carlson, J. R., and Dickinson, E. 0., 1978, 3-Methylindole-induced pulmonary edema and emphysema in sheep, Am. J. Vet. Res. 39: 1355.Google Scholar
  9. Bray, T. M., and Atwal, O. S., 1979, Effect of energy restriction on mixed function oxidase activities and the development of acute pulmonary edema, Fed. Proc. 39: 891.Google Scholar
  10. Bray, T. M., and Carlson, J. R., 1975, The effects of 3-methylindole on hemolysis, transport of 22Na+, and ATPase activities of bovine erythrocytes, Proc. Soc. Exp. Biol. Med. 148: 875.CrossRefGoogle Scholar
  11. Bray, T. M., and Carlson, J. R., 1979a, Role of mixed function oxidase in 3-methylindole-induced acute pulmonary edema in goats, Am. J. Vet. Res. 40: 1268.Google Scholar
  12. Bray, T. M., and Carlson, J. R., 1979b, Covalent binding of 3-methylindole metabolites in goat lung microsomal preparations, Fed. Proc. 38: 1329.Google Scholar
  13. Bray, T. M., and Carlson, J. R., 1980, Tissue and subcellular [14C]-methylindole in rabbits after intratracheal infusion, Can. J. Physiol. Pharmacol. 58: 1399.CrossRefGoogle Scholar
  14. Bray, T. M. and Merrill, J. C., 1982, The effect of sulfur compounds on the susceptibility to 3methylindole-induced lung disease, Proc. Can. Fed. Biol. Sci. 25: 101.Google Scholar
  15. Bray, T. M., Magnuson, J. A., and Carlson, J. R., 1974, Nuclear magnetic resonance studies of lecithin-skatole interaction, J. Biol. Chem. 249: 914.Google Scholar
  16. Bray, T. M., Sandberg, H. E., and Carlson, J. R., 1975, An EPR study of structural perturbations induced by 3-methylindole in the protein and lipid regions of erythrocyte membranes, Biochim. Biophys. Acta 382: 534.CrossRefGoogle Scholar
  17. Breeze, R. G., Pirie, H. M., Dawson, C. 0., Selman, I. E., and Wiseman, A., 1975, The pathology of respiratory diseases of adult cattle in Britain, Folia Vet. Lat. 5: 95.Google Scholar
  18. Breeze, R. G., Pirie, H. M., Selman, I. E., and Wiseman, A., 1976, Fog fever (acute pulmonary emphysema) in cattle in Britain, Vet. Bull. 46: 243.Google Scholar
  19. Breeze, R. G., Lee, H. A., and Grant, B. D., 1978, Toxic lung disease, Mod. Vet. Pract. 59: 301.Google Scholar
  20. Brooks, P., 1977, Role of covalent binding in carcinogenicity, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 470–480, Plenum Press, New York.CrossRefGoogle Scholar
  21. Burley, F. E., and Bray, T. M., 1981, The Effect of Retinoids on the Prevention and Treatment of a Respiratory Disease in Cattle, Proceedings, Seventeenth Annual Nutrition Conference for Feed Manufacturers, pp. 85–88.Google Scholar
  22. Bus, J. S., and Gibson, J. E., 1979, Lipid peroxidation and its role in toxicity, in: Reviews in Biochemical Toxicity ( E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), pp. 125–149, Elsevier, New York.Google Scholar
  23. Campbell, T. C., 1978, Effect of dietary protein on drug metabolism, in: Nutrition and Drug Interrelations ( J. N. Hathcock and J. Coon, eds.), pp. 409–422, Academic Press, New York.CrossRefGoogle Scholar
  24. Campbell, T. C., and Hayes, J. R., 1974, Role of nutrition in the drug-metabolizing system, Pharmacol. Rev. 26: 171.Google Scholar
  25. Carlson, J. R., and Dickinson, E. 0., 1978, Tryptophan-induced pulmonary edema and emphysema in ruminants, in: Effect of Poisonous Plants on Livestock ( R. F. Keller, K. R. Van Kampen, and L. F. James, eds.), pp. 261–272, Academic Press, New York.CrossRefGoogle Scholar
  26. Carlson, J. R., Dyer, I. A., and Johnson, R. J., 1968, Tryptophan-induced interstitial pulmonary emphysema in cattle, Am. J. Vet. Res. 29: 1983.Google Scholar
  27. Carlson, J. R., Yokoyama, M. R., and Dickinson, E. O., 1972, Induction of pulmonary edema and emphysema in cattle and goats with 3-methylindole, Science 176: 298.CrossRefGoogle Scholar
  28. Carlson, J. R., Dickinson, E. O. Yokoyama, M. T., and Bradley, B. J., 1975, Pulmonary edema and emphysema in cattle after intraruminal and intravenous administration of 3-methylindole, Am. J. Vet. Res. 36: 1342.Google Scholar
  29. Carlson, J. R., Breeze, R. G., Campbell, K. B., Wakao, Y., Klavano, P. A., and Nocerini, M. R., 1980, Effect of 3-methylindole (3MI, skatole) on isolated perfused horse lungs, Fed. Proc. 39: 306.Google Scholar
  30. Chow, C. L., and Tappel, A. L., 1972, An enzymic protective mechanism against lipid peroxidation damage to lungs of ozone exposed rats, Lipids 7: 518.CrossRefGoogle Scholar
  31. Conochie, J., 1953, Indole and skatole in the milk of ruminants feeding on Lepidium sp., Aust. J. Exp. Biol. Med. Sci. 31: 373.CrossRefGoogle Scholar
  32. Cross, C. E., Hasegawa, G., Reddy, K. A., and Omaye, S. T., 1977, Enhanced lung toxicity of 02 in selenium deficient rats, Res. Commun. Chem. Pathol. Pharmacol. 16: 695.Google Scholar
  33. Dickinson, E. V., Yokoyama, M. T., Carlson, J. R., and Bradley, B. J., 1976, Induction of pulmonary edema and emphysema in goats by intraruminal administration of 3-methylindole, Am. J. Vet. Res. 37: 667.Google Scholar
  34. Dutcher, J. S., and Boyd, M. R., 1979, Species and strain differences in target organ alkylation and toxicity by 4-ipomeanol predictive value of covalent binding in studies of target organ toxicities by reactive metabolites, Biochem. Pharmacol. 28: 3367.CrossRefGoogle Scholar
  35. Eadie, J. M., and Oxford, A. E., 1954, A remarkable disintegrative effect of skatole upon certain rumen ciliate protozoa, Nature (London) 174: 973.CrossRefGoogle Scholar
  36. Fordtran, J. S., Scoggie, W. B., and Potter, D. E., 1964, Colonic absorption of tryptophan metabolites in man, J. Lab. Clin. Med. 64: 125.Google Scholar
  37. Frydman, R. B., Tomaro, M. L., and Frydman, B., 1971, Pyrrolooxygenases: The biosynthesis of 2amioacetophenone, FEBS Lett. 17: 273.CrossRefGoogle Scholar
  38. Frydman, R. B., Frydman, B., and Tomaro, M. L., 1973, Pyrrolooxygenases: A new type of oxidases, Mol. Cell. Biochem. 2: 121.CrossRefGoogle Scholar
  39. Gelborn, H. V., Selkirk, J., Okuda, T., Nemoto, N., Yang, S. K., Wiebel, F. J., Whitlock, J. P., Rapp, H. J., and Bast, R. C., 1977, Benzo(a)pyrene metabolism: Enzymatic and liquid chromatographic analysis and application to human liver, lymphocytes and monocytes, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vaimio, eds.), pp. 98–123, Plenum Press, New York.CrossRefGoogle Scholar
  40. Gillette, J. R., 1974, A perspective on the role chemically reactive metabolites of foreign compounds in toxicity. 1. Correlation of changes in covalent binding of reactive intermediates with changes in the incidence and severity of toxicity, Biochem. Pharmacol. 23: 2785.CrossRefGoogle Scholar
  41. Gillette, J. R., 1979, Effects of induction of cytochrome P-450 enzymes on the concentration of foreign compounds and their metabolites and on the toxicological effects of these compounds, Drug Metab. Rev. 10: 59.CrossRefGoogle Scholar
  42. Gillette, J. R., and Pohl, L. R., 1977, A prospective on covalent binding and toxicity, J. Toxicol. Environ. Health 2: 849.CrossRefGoogle Scholar
  43. Guengerich, F. P., 1979, Isolation and purification of cytochrome P-450, and the existance of mutiple forms, Pharmacol. Ther. 6: 99.CrossRefGoogle Scholar
  44. Hammond, A. C., and Carlson, J. R., 1980, Factors affecting binding of 3-methylindole metabolites in crude microsomal preparations, Fed. Proc. 39: 306.Google Scholar
  45. Hammond, A. C., Carlson, J. R., and Breeze, R. G., 1978, Monensin and the prevention of tryptophan-induced acute bovine pulmonary edema and emphysema, Science 201: 153.CrossRefGoogle Scholar
  46. Hammond, A. C., Carlson, J. R., and Willett, J. D., 1979a, The metabolism and disposition of 3-methylindole in goats, Life Sci. 25: 1301.CrossRefGoogle Scholar
  47. Hammond, A. C., Bradley, B. J., Yokoyama, M. T., Carlson, J. R., and Dickinson, E. D., 1979b, 3-Methylindole and naturally occurring acute bovine pulmonary edema and emphysema, Am. J. Vet. Res. 40: 1398.Google Scholar
  48. Hammond, A. C., Carlson, J. R., and Breeze, R. G., 1980a, Indole toxicity in cattle, Vet. Rec. 107: 344.CrossRefGoogle Scholar
  49. Hammond, A. C., Carlson, J. R., and Breeze, R. G., 1980b, Prevention of tryptophan-induced acute bovine pulmonary edema and emphysema (fog fever), Vet. Rec. 107: 322.CrossRefGoogle Scholar
  50. Heacock, R. A., and Mahon, M. E., 1963, The hydroxylation of skatole, Can. J. Biochem. Physiol. 41: 2381.CrossRefGoogle Scholar
  51. Herter, C. A., 1907, The Common Bacterial Infections of the Digestive Tract and the Intoxications Arising from Them, p. 241, Macmillan, New York.Google Scholar
  52. Hoffman, D., and Rathkamp, G., 1970, Quantitative determination of 1-alkylindoles in cigarette smoke, Anal. Chem. 42: 366.CrossRefGoogle Scholar
  53. Horning, E. C., and Dalgliesh, D. E., 1958, The association of skatole-forming bacteria in the small intestine with the malabsorption syndrome and certain anaemias, Biochem. J. 70: 13.Google Scholar
  54. Hoshika, Y., 1977, Simultaneous gas chromatographic analysis of lower fatty acids, phenols, and indoles using a glass capillary column, J. Chromatogr. 144: 181.CrossRefGoogle Scholar
  55. Huang, T. W., Carlson, J. R., Bray, T. M., and Bradley, B. J., 1977, 3-Methylindole-induced pulmonary injury in goats, Am. J. Pathol. 87: 647.Google Scholar
  56. Hyslop, N. St. G., 1969, Bovine pulmonary emphysema, Can. Vet. J. 10: 251.Google Scholar
  57. Jerina, D. M., and Bend, J. R., 1977, Glutathione-S-transferase, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 207–236, Plenum Press, New York.CrossRefGoogle Scholar
  58. Johnson, E. F., 1979, Multiple forms of cytochrome P-450: Criteria and significance, in: Reviews in Biochemical Toxicology ( E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), pp. 1–26, Elsevier/ North-Holland, New York.Google Scholar
  59. Jollow, D. J., and Smith, C., 1977, Biochemical aspects of toxic metabolite formation, detoxification, and covalent binding, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 42–59, Plenum Press, New York.CrossRefGoogle Scholar
  60. King, L. J., Parke, D. V., and Williams, R. T., 1966, The metabolism of 2–14C, indole in the rat, Biochem. J. 98: 266.Google Scholar
  61. Kubow, S., and Bray, T. M., 1982, ESR spin-trapping of free radical formation during in vitro metabolism of 3-methylindole, Fed. Proc. 41: 775.Google Scholar
  62. Lu, A. Y. H., and Miwa, G. T., 1980, Molecular properties and biological functions of microsomal epoxide hydrase, Annu. Rev. Pharmacol. Toxicol. 20: 513.CrossRefGoogle Scholar
  63. Mahon, M. R., and Mattok, G. L., 1967, The differential determination of conjugated hydroxyskatoles in human urine, Can. J. Biochem. 45: 1317.CrossRefGoogle Scholar
  64. Mattocks, A. R., 1978, Recent studies on mechanisms of cytotoxic action of pyrrolizidine alkoloids, in: Effect of Poisonous Plants in Livestock ( R. F. Keller, K. R. Van Kampen, and L. F. James, eds.), pp. 177–187, Academic Press, New York.CrossRefGoogle Scholar
  65. McCord, J. R., 1979, Superoxide dismutase, and oxygen toxicity, in: Reviews in Biochemical Toxicology ( E. Hodgson, J. R., Bend, and R. M. Philpot, eds.), pp. 109–124, Elsevier, New York.Google Scholar
  66. Menzel, D. B., 1980, Protection against environmental toxicants, in: Vitamin E, A Comprehensive Treatise ( L. J. Machlin, ed.), pp. 474–494, Dekker, New York/Basel.Google Scholar
  67. Miller, J. A., and Miller, E. C., 1977, The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines, safrole and aflatoxin B1, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 6–24, Plenum Press, New York.CrossRefGoogle Scholar
  68. Mustafa, M. G., and Tierney, D. F., 1978, Biochemical and metabolic changes in the lung with oxygen, ozone and nitrogen dioxide toxicity, Am. Rev. Resp. Dis. 118: 1061.Google Scholar
  69. Nakoneczna, I., Forbes, J. C., and Rogers, K. S., 1969, The arthritogenic effect of indole, skatole, and other tryptophan metabolites in rabbits, Am. J. Pathol. 57: 523.Google Scholar
  70. Nocerini, M. R., Carlson, J. R., and Breeze, R. G., 1982, Effects of tissue glutathione status on covalent binding and 3-methylindole induced lung injury, Fed. Proc. 41: 352.Google Scholar
  71. Oesch, F., Bentley, P., and Glatt, H. R., 1977, Epoxide hydratase: Purification to apparent homogeneity as a specific probe for the relative importance of epoxides among other reactive metabolites, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), pp. 181–206, Plenum Press, New York.CrossRefGoogle Scholar
  72. Omaye, S. T., Reddy, K. A., and Cross, C. E., 1978, Enhanced lung toxicity of paraquat in selenium-deficient rats, Toxicol. Appl. Pharmacol. 43: 237.CrossRefGoogle Scholar
  73. Pirie, H. M., Breeze, R. G., Selman, I. E., and Wiseman, A., 1974, Fog fever in cattle: Pathology, Vet. Rec. 97: 479.CrossRefGoogle Scholar
  74. Pirie, H. M., Breeze, R. G., Selman, I. E., and Wiseman, A., 1976, Indoleacetic acid, 3-methylindole and Type II pneumonocyte hyperplasia in a proliferative alveolitis of cattle, Vet. Rec. 98: 259.CrossRefGoogle Scholar
  75. Potchoiba, M. J., Carlson, H. R., and Breeze, R. G., 1982, Metabolism and pneumotoxicity of 3-methyloxindole, indole-3-carbinol and 3-methylindole in goats, Am. J. Vet. Res. 43: 1418.Google Scholar
  76. Reid, W. D., 1973, Mechanism of renal necrosis induced by bromobenzene or chlorobenzene. Exp. Mol. Pathol. 19: 197.CrossRefGoogle Scholar
  77. Reid, W. D., Ilett, K. F., Glick, J. M., and Krishna, G., 1973, Metabolism and binding of aromatic hydrocarbons in the lung, Am. Rev. Resp. Dis. 107: 539.Google Scholar
  78. Rogers, K. S., 1969, Rabbit erythrocyte hemolysis by lipophilic aryl molecules, Proc. Soc. Exp. Biol. Med. 130: 1140.CrossRefGoogle Scholar
  79. Schofield, F. W., 1948, Acute pulmonary emphysema of cattle, J. Am. Vet. Med. Assoc. 112: 254.Google Scholar
  80. Selkirk, J. K., 1977, Benzo(a)pyrene carcinogenesis: a biochemical selection mechanism, J. Toxicol. Environ. Health 2: 1245.CrossRefGoogle Scholar
  81. Selman, I. E., Wiseman, A., Pirie, H. M., and Breeze, R. G., 1974, Fog fever in cattle: Clinical and epidemiological features, Vet. Rec. 95: 139.CrossRefGoogle Scholar
  82. Selman, I. E., Breeze, R. G., Bogan, J. A., Wiseman, A., and Pirie, H. M., 1977a, Experimental production of fog fever by change to pasture free from Dictyocaulus viviparus infection, Vet. Rec. 101: 278.CrossRefGoogle Scholar
  83. Selman, I. E., Wiseman, A., Breeze, R. G., and Pirie, H. M., 19776, Differential diagnosis of pulmonary disease in adult cattle in Britain, Bovine Pract. 12: 63.Google Scholar
  84. Serabjit-Singh, C. J., Wolf, C. R., and Philpot, R. M., 1979, The rabbit pulmonary monoozygenase system, immunochemical and biochemical characterization of enzyme components, J. Biol. Chem. 245: 9901.Google Scholar
  85. Sikic, B. I., Mimnaugh, E. G., Litterst, C. L., and Gram, T. E., 1977, The effects of ascorbic acid deficiency and repletion on pulmonary, renal, and hepatic drug metabolism in the guinea pig, Arch. Biochem. Biophys. 179: 663.CrossRefGoogle Scholar
  86. Spoelstra, S. F., 1977, Simple phenols and indoles in anaerobically stored piggery wastes, J. Sci. Food Agr. 28: 415.CrossRefGoogle Scholar
  87. Sprince, H., 1962, Biochemical aspects of indole metabolism in normal and schizophrenic subjects, Ann. N.Y. Acad. Sci. 96: 399.CrossRefGoogle Scholar
  88. Staubli, W., Hess, R., and Weibel, E. R., 1969, Correlated morphometric and biochemical studies on the liver cell. II. Effect of phenobarbitol on rat hepatocytes, J. Cell. Biol. 42: 92.CrossRefGoogle Scholar
  89. Urbach, G., Stark, W., and Forss, D. A., 1972, Volatile compounds in butter. II. Flavour and flavour thresholds of lactones, fatty acids, phenols, indole and skatole in deodorized synthetic butter, J. Dairy Res. 29: 35.CrossRefGoogle Scholar
  90. Williams, R. T., 1978, Nutrients in drug detoxification reactions, in: Nutrition and Drug Interre- lations (J. N. Hathcock and J. Coon, eds.), pp. 303–318, Academic Press, New York.CrossRefGoogle Scholar
  91. Wilson, B. J., Garst, J. E., and Lanabary, R. D., 1978, Pulmonary toxicity of naturally occurring 3-substituted furans, in: Effects of Poisonous Plants on Livestock ( R. F. Keeler, K. R. Van Kampen, and L. J. James, eds.), pp. 311–323, Academic Press, New York.CrossRefGoogle Scholar
  92. Winston, G. W., Carlson, J. R., and Hammond, A. C., 1980, Metabolism of 3-methylindole (3MI) by a crude goat lung microsomal preparation, Fed. Proc. 39: 1751.Google Scholar
  93. Witschi, H., 1976, Proliferation of Type II alveolar cells: A review of common responses to toxic lung injury, Toxicology 5: 267.CrossRefGoogle Scholar
  94. Witschi, H., and Cote, M. G., 1976, Biochemical pathology of lung damage produced by chemicals, Fed. Proc. 35: 89.Google Scholar
  95. Witschi, H., and Cote, M. G., 1977, Primary pulmonary responses to toxic agents, CRC Crit. Rev. Toxicol. 5: 23.CrossRefGoogle Scholar
  96. Wolf, C. R., Smith, B. R., Ball, L. M., Serabjit-Singh, C., Bend, J. R., and Philpot, R. M., 1979, The rabbit pulmonary monooxogenic system. Catalytic differences between two purified forms of cytochrome P-450 in the metabolism of benzo(a)pyrene, J. Biol. Chem. 254: 3658.Google Scholar
  97. Wynder, E. L., and Hoffman, D., 1967, Tobacco and Tobacco Smoke, pp. 337–379, Academic Press, New York.Google Scholar
  98. Yang, N. Y. J., and Carlson, J. R., 1977, Release of marker lysosomal enzymes by 3-methylindole and indole from rabbit lung lavage cells, Proc. Soc. Exp. Biol. Med. 154: 269.CrossRefGoogle Scholar
  99. Yokoyama, M. T., and Carlson, J. R., 1974, The dissimilation of tryptophan related indolic compounds by ruminal microorganisms, in vitro, Appl. Microbiol. 27: 540.Google Scholar
  100. Yokoyama, M. T., and Carlson, J. R., 1979, Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole, Am. J. Clin. Nutt-. 32: 173.Google Scholar
  101. Yokoyama, M. T., Carlson, J. R., and Dickinson, E. 0., 1975, Ruminal and plasma concentrations of 3-methylindole associated with tryptophan-induced pulmonary edema and emphysema in cattle, Am. J. Vet. Res. 36: 1349.Google Scholar
  102. Yoshihara, I., and Maruta, K., 1977, Gas chromatographic microdetermination of indole and skatole in gastrointestinal contents of domestic animals, Agric. Biol. Chem. 41: 2083.CrossRefGoogle Scholar
  103. Yokoyama, M. T., Carlson, J. R., and Holdeman, L. V., 1977, Isolation and characterization of a skatole producing Lactobacillus sp. from the bovine rumen, Appl. Environ. Microbiol. 34: 837.Google Scholar
  104. Zannoni, V. G., Sato, P. H., and Rikans, L. E., 1978, Ascorbic Acid and Drug Metabolism, in: Nutrition and Drug Interrelations ( J. N. Hathcock and J. Coons eds.), pp. 347–370, Academic Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • James R. Carlson
    • 1
  • Tammy M. Bray
    • 2
  1. 1.Department of Animal SciencesWashington State UniversityPullmanUSA
  2. 2.Department of NutritionUniversity of GuelphGuelphCanada

Personalised recommendations