Skip to main content

Part of the book series: Advances in Nuclear Science and Technology ((ACRE,volume 10))

Abstract

To take a step forward, one must first make sure one is pointing in the right direction. In this paper, I shall first of all turn around while standing on the spot, and then take one or two tentative steps. I shall by no means exhaust the steps that can be taken. To some, my turning around may appear a retrograde step and they will shake their heads accordingly. This turning around on the spot has occupied me for six years now; I feel it timely to commit the essence to paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bridgman, P.W., The Logic of Modern Physics, Page 123, Collier-Macmillan, New York, 1960.

    Google Scholar 

  2. De Groot, S.R., Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, 1951.

    MATH  Google Scholar 

  3. Hesketh, R.V., “Ohm’s Law and Thermodynamic Equilibrium,” CEGB Report RD/B/N3561, 1976.

    Google Scholar 

  4. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Wiley, New York, 1961.

    MATH  Google Scholar 

  5. Thomson, W., “On a Mechanical Theory of Thermo-Electric Currents,” Proceedings, Royal Society Edinburgh, 3, PP 91–98, 1854; “On the Dynamical Theory of Heat. Part VI. Thermo-Electric Currents,” Transactions, Royal Society Edinburgh, 22, Part I, PP 123–171, 1854.

    Google Scholar 

  6. Onsager, L., “Reciprocal Relations in Irreversible Processes. I.,” Physical Review, 37, PP 405–426, 1931; “Reciprocal Relations in Irreversible Processes. II.,” Physical Review, 38, PP 2265–2279, 1931.

    Article  Google Scholar 

  7. Zubarev, D.N., Non-Equilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974.

    Google Scholar 

  8. Hesketh, R.V., “How Big is the Linear Region of Irreversible Thermodynamics?” Thin Solid Films, 28, PP 375–387, 1975.

    Article  Google Scholar 

  9. Letters of Colleagues to R. V. Hesketh, 1975.

    Google Scholar 

  10. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 1953.

    MATH  Google Scholar 

  11. Ziman, J.M., Principles of the Theory of Solids, University Press, Cambridge, 1964.

    MATH  Google Scholar 

  12. Chapman, S., and Cowling, T.G., The Mathematical Theory of Nonuniform Gases, University Press, Cambridge, 1970.

    Google Scholar 

  13. Huntington, H.B., “Effect of Driving Forces on Atom Motion,” Thin Solid Films, 25, PP 265–280, 1975.

    Article  Google Scholar 

  14. Peierls, R.E., Quantum Theory of Solids, Clarendon Press, Oxford, 1955.

    MATH  Google Scholar 

  15. Kittel, C., Quantum Theory of Solids, Wiley, New York, 1963.

    Google Scholar 

  16. Hesketh, R.V., “Atom Transport Down Thermal and Electric Gradients in Solids,” CEGB Report RD/B/N1468, 1969; “The Direct Force in Electromigration,” CEGB Report RD/B/N3560, 1975.

    Google Scholar 

  17. Das, A.K., and Peierls, R.E., “The Force on a Moving Charge in an Electron Gas,” Journal of Physics C., 6, PP 2811–2821, 1973.

    Article  Google Scholar 

  18. Das, A.K., and Peierls, R.E., “The Force in Electromigration,” Journal of Physics C., 8, PP 3348–3352, 1975.

    Article  Google Scholar 

  19. Kumar, P., and Sorbello, R.S., “Linear Response Theory of the Driving Forces for Electromigration,” Thin Solid Films, 25, PP 25–35, 1975.

    Article  Google Scholar 

  20. Landauer, R., “The Das-Peierls Electromigration Theorem,” Journal of Physics C., 8, PP L389–392, 1975.

    Article  Google Scholar 

  21. Sorbello, R.S., “Theory of Electromigration in Metals,” Comments on Solid State Physics, B6, PP 117–122, 1975.

    Google Scholar 

  22. Shewmon, P.G., Diffusion in Solids, McGraw-Hill, New York, 1963.

    Google Scholar 

  23. Huntington, H.B., “Driving Forces for Thermal Mass Transport,” Journal of the Physics and Chemistry of Solids, 29, PP 1641–1651, 1968.

    Article  Google Scholar 

  24. Shockley, W.,”Some Predicted Effects of Temperature Gradients on Diffusion in Crystals,” Physical Review, 93, PP 345–346, 1954.

    Article  Google Scholar 

  25. Seeger, A., “Curved Arrhenius Plots in Self-Diffusion,” Comments on Solid State Physics, 4, PP 18–27, 1971.

    Article  Google Scholar 

  26. Burton, J.J., “Analysis of Silver Self-Diffusion Data,” Philosophical Magazine, 29, PP 121–133, 1974.

    Google Scholar 

  27. Rothman, S.J., Peterson, N.L., and Robinson, J.T., “Isotope Effect for Self-Diffusion in Single Crystals of Silver,” Physica status solidi, 39, PP 635–645, 1973.

    Article  Google Scholar 

  28. American Society for Metals, Diffusion in Body-Centered Cubic Metals, ASM, Metals Park, Ohio, 1965.

    Google Scholar 

  29. Gerritsen, A.N., Encyclopedia of Physics, (S. Flügge, Editor), Vol. 19, PP 137–226, Springer, Berlin, 1956.

    Google Scholar 

  30. Hesketh, R.V., “A Heavy Isotope in a Solid Drifts Down a Thermal Energy Gradient, Journal de Physique, Vol. 37, PP 183–188, March, 1976.

    Article  Google Scholar 

  31. Rose, R.M., Shephard, L.A., and Wulff, J., Electronic Properties, Wiley, New York, 1966.

    Google Scholar 

  32. Vasaru, G., “Thermal Diffusion in Isotopic Gaseous Mixtures,” Fortschritte der Physik, 15, PP 1–111, 1967.

    Article  Google Scholar 

  33. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    MATH  Google Scholar 

  34. Grew, K.E., and Ibbs, T.L., Thermal Diffusion in Gases, University Press, Cambridge, 1952.

    MATH  Google Scholar 

  35. Jeans, J.H., The Dynamical Theory of Gases, University Press, Cambridge, 1925.

    MATH  Google Scholar 

  36. Crolet, J.L., “Experimental and Theoretical Study of the ‘Intrinsic Contribution’ to the Heat of Transport,” Zeitschrift für Naturforschung, 26a, PP. 907–914, 1971.

    Google Scholar 

  37. Callen, H.B., Thermodynamics, Wiley, New York, 1960.

    MATH  Google Scholar 

  38. Planck, M., Treatise on Thermodynamics, Dover, New York, 1945.

    Google Scholar 

  39. Shewmon, P.G., “Thermal Diffusion of Carbon in α and γ Iron,” Acta Metallurgica, 8, PP 605–611, 1960.

    Article  Google Scholar 

  40. Allnatt, A.R., and Chadwick, A.V., “Thermal Diffusion of Strontium Ions in Sodium Chloride,” Transactions of the Faraday Society, 63, PP 1929–1942, 1967.

    Article  Google Scholar 

  41. Thernquist, P., and Lodding, A., “Isotope Transport Along a Temperature Gradient in Li Metal,” Zeitschrift für Naturforschung, 22a, PP 837–839, 1967.

    Google Scholar 

  42. Glansdorff, P., and Prigogine, I., Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, London, 1971.

    MATH  Google Scholar 

  43. Ashkin, A., “The Pressure of Laser Light,” Scientific American, 226, No. 2, PP 63–71, 1972.

    Article  Google Scholar 

  44. Poynting, J.H., “Radiation Pressure,” Philosophical Magazine, 9, PP 393–406, 1905.

    Article  Google Scholar 

  45. Vigoureux, P., “Radiation Pressure,” Contemporary Physics, 7, PP 440–446, 1966.

    Article  Google Scholar 

  46. Morse, P.M., and Feshbach, H., Methods of Theoretical Physics, Part I, PP 302–306, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  47. Pippard, A.B., and Saxton, W.O. (Editors), Cavendish Problems in Classical Physics, Problem 51 (c), University Press, Cambridge, Second Edition, 1971.

    Google Scholar 

  48. Burt, M.G., and Peierls, R.E., “The Momentum of a Light Wave in a Refracting Medium,” Proceedings of the Royal Society, A333, PP 149–156, 1973.

    Google Scholar 

  49. Hall, H.E., Solid State Physics, Wiley, London, 1974.

    Google Scholar 

  50. Lipkin, H.J., Quantum Mechanics, New Approaches to Selected Topics, North-Holland, Amsterdam, 1973.

    Google Scholar 

  51. Wood, A.B., Acoustics, Blackie, London, 1940.

    Google Scholar 

  52. Chapman, S., “Thermal Diffusion of Rare Gas Constituents in Gas Mixtures,” Philosophical Magazine, 7, PP 1–16, 1929.

    Google Scholar 

  53. Hesketh, R.V., Diffusion Processes (J. N. Sherwood et al. Editors), Vol. 1, PP 231–273, Gordon and Breach, London, 1959.

    Google Scholar 

  54. Hesketh, R.V., Atomic Transport in Solids and Liquids (A. Lodding and T. Lagerwall, Editors), Verlag der Zeitschrift für Naturforschung, PP 23–35, Tübingen, 1971.

    Google Scholar 

  55. Paul, R., Howard, A. J., and Watson, W.W., “Isotopic Thermal-Diffusion Factor for Xenon,” Journal of Chemical Physics, 43, PP 1890–1894, 1965.

    Article  Google Scholar 

  56. Jones, R.C., and Furry, W.H., “The Separation of Isotopes by Thermal Diffusion,” Reviews of Modern Physics, 18, PP 151–224, 1946.

    Article  Google Scholar 

  57. Frankel, S.P., “Elementary Derivation of Thermal Diffusion,” Physical Review, 57, Page 661, 1940.

    Article  Google Scholar 

  58. Cowling, T.G., “Approximate Theories of Thermal Diffusion,” Journal of Physics A, 3, PP 774–782, 1970.

    Article  Google Scholar 

  59. Letters to R. V. Hesketh, 1970–1971.

    Google Scholar 

  60. Cowling, T.G., Private Communication, 1970–1972.

    Google Scholar 

  61. Furth, R., “An Elementary Theory of Thermal Diffusion,” Proceedings of the Royal Society, A179, PP 461–469, 1942.

    Google Scholar 

  62. Monchick, L., and Mason, E.A., “Free-Flight Theory of Gas Mixtures,” Physics of Fluids, 10, PP 1377–1390, 1967.

    Article  Google Scholar 

  63. Waldmann, L., Encyclopedia of Physics, Vol. 12 (S. Flügge, Editor), PP 295–514, Springer, Berlin, 1958.

    Google Scholar 

  64. Burbury, S.H., The Kinetic Theory of Gases, University Press, Cambridge, 1899.

    Google Scholar 

  65. Burbury, S.H., “Boltzmann’s Law of Distribution ε-2hχ, and van der Waals’ Theorem,” Philosophical Magazine, 2, PP 403–417, 1901.

    Article  MATH  Google Scholar 

  66. Wyllie, G.A.P., Private Communication, 1973.

    Google Scholar 

  67. Burbury, S.H., “On the General Theory of Stationary Motion in an Infinite System of Molecules,” Proceedings of the London Mathematical Society, 29, PP 225–248, 1898.

    Article  MathSciNet  Google Scholar 

  68. Sommerfeld, A., Thermodynamics and Statistical Mechanics, Academic Press, New York, 1956.

    MATH  Google Scholar 

  69. Reif, F., Fundamentals of Statical and Thermal Physics, Section 7.5, McGraw-Hill, New York, 1965.

    Google Scholar 

  70. Maxwell, J.C., On Boltzmann’s Theorem on the Average Distribution of Energy in a System of Material Points; Collected Scientific Papers (W.D. Niven, Editor), Vol. 2, PP 713–741, Reprinted by Dover, New York, 1965.

    Google Scholar 

  71. Landau, L.D., and Lifshitz, E.M., Mechanics, Page 1, Pergamon Press, Oxford, 1960.

    MATH  Google Scholar 

  72. Maxwell, J.C., Atom; Collected Scientific Papers (W.D. Niven, Editor), Vol. 2, PP 445–484, Reprinted by Dover, New York, 1965.

    Google Scholar 

  73. Kuhn, T.S., The Structure of Scientific Revolutions, University Press, Chicago, Second Edition, 1970.

    Google Scholar 

  74. Maxwell, J.C., An Essay on the Mathematical Principles of Physics, etc. (Review), Collected Scientific Papers (W.D. Niven, Editor), Vol. 2, Page 339, Reprinted by Dover, New York, 1965.

    Google Scholar 

  75. Saxena, S.C., and Raman, S. “Theory and Performance of Thermal Diffusion Column,” Reviews of Modern Physics, 34, PP 252–266, 1962.

    Article  Google Scholar 

  76. Tokuda, T., Ando, Y., and Fukui, K., “Thermal Diffusion of Argon Isotopes,” Journal of Applied Physics, 41, PP 2854–2859, 1970.

    Article  Google Scholar 

  77. Landau, L.D., and Lifshitz, E.M., Statistical Physics, Chapter 2, Pergamon Press, London, 1958.

    MATH  Google Scholar 

  78. Mathur, B.P., and Watson, W.W., “Thermal Diffusion in Isotopic 16O2– 18O2,” Journal of Chemical Physics, 51, PP 2210–2214, 1969.

    Article  Google Scholar 

  79. Biersack, J., and Diez, W., “Motion of Markers and Bubbles in Solids by Self-Diffusion in a Temperature Gradient,” Physica status solidi, 27, PP 139–144, 1968.

    Article  Google Scholar 

  80. Waldman, L., and Schmitt, K.H., Aerosol Science (C. N. Davies, Editor), PP 137–162, Academic Press, New York, 1966.

    Google Scholar 

  81. Hesketh, R.V., Discussion, Supplement au Journal de Physique, 34, C9–19, 1973.

    Google Scholar 

  82. Routbort, J.L., “Electromigration in Zinc Single Crystals,” Physical Review, 176, PP 796–803, 1968.

    Article  Google Scholar 

  83. Huntington, H.B., Alexander, W.B., Feit, M.D., and Routbort, J.L., “Atomic Transport in Solids and Liquids,” (A. Loading and T. Lagerwall, Editors), Verlag der Zeitschrift für Naturforschung, PP 91–96, Tübingen, 1971.

    Google Scholar 

  84. Ziman, J.M., The Physics of Metals, I. Electrons, (J.M. Ziman, Editor), PP 250–282, University Press, Cambridge, 1969.

    Google Scholar 

  85. Schwarz, H., “Die Bestimmung der Fermifläche von Kadmium aus der Orientierungsabhängigkeit der Periode der Sondheimer-Oszillationen,” physica status solidi, 39, PP 507–514, 1970.

    Article  Google Scholar 

  86. Smith, R.A., Wave Mechanics of Crystalline Solids, Chapter 8, InlineEquations (106, 107), Chapman and Hall, London, 1961.

    MATH  Google Scholar 

  87. Smith, A.C., Janak, J.F., and Adler, R.B., Electronic Conduction in Solids, McGraw-Hill, New York, 1967.

    Google Scholar 

  88. Huntington, H.B., “Current Basic Problem in Electromigration in Metals,” Transactions, Metals Society AIME, 245, PP 2571–2579, 1969.

    Google Scholar 

  89. Ho, P.S., “Electromigration and Soret Effect in Cobalt,” Journal of the Physics and Chemistry of Solids, 27, PP 1331–1338, 1966.

    Article  Google Scholar 

  90. D’Amico, J.F., and Huntington, H.B., “Electromigration and Thermomigration in Gamma-Uranium,” Journal of the Physics and Chemistry of Solids, 30, PP 2607–2621, 1969.

    Article  Google Scholar 

  91. Brown, S., and Barnett, S.J., “Carriers of Electricity in Metals Exhibiting Positive Hall Effects,” Physical Review, 87, PP 601–607, 1952.

    Article  Google Scholar 

  92. Beniere, F,, Beniere, M., and Chemla, M., “Conductibilitie, Nombres de Transport et Autodiffusion des ions dans Differents Monocristaux de Chlorure de Sodium,” Journal of the Physics and Chemistry of Solids, 31, PP 1205–1220, 1970.

    Article  Google Scholar 

  93. Lowe, I., and Blackburn, D.A., “Measurement of the Heat of Transport of K+ ions in Potassium Chloride,” Supplement au Journal de Physique, 34, C9–191–197, 1973.

    Google Scholar 

  94. Thernquist, P., and Lodding, A., “Electrotransport of Lattice Defects in Lithium Metal,” Zeitschrift für Naturforschung, 23a, PP 627–628, 1968.

    Google Scholar 

  95. Lodding, A., Mundy, J.N., and Ott, A., “Isotope InterDiffusion and Self-Diffusion in Solid Lithium Metal,” physica status solidi, 38, PP 559–569, 1970.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Hesketh, R.V. (1977). Thermodynamic Developments. In: Henley, E.J., Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9913-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9913-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9915-5

  • Online ISBN: 978-1-4613-9913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics