Skip to main content

Extrapolation Lengths in Pulsed Neutron Diffusion Measurements

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science and Technology ((ACRE,volume 10))

Abstract

The pulsed neutron source method has been widely used for the determination of thermal neutron diffusion parameters of various materials. Descriptions of the method and reviews of performed work have been given by several authors (1, 2, 3, 4). As can be seen from these works, there are many difficulties both on the experimental side and in the theoretical interpretation. In fact, several discrepancies exist between the results of different experimentalists and also between results from the pulsed source method and from other types of experiments. In later years, many theoretical papers have considerably advanced the understanding of the problems. It is regrettable that they were not available when most of the experiments were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Dardel, G., and Sjöstrand, N.G. “Diffusion Measurements with Pulsed Neutron Sources,” Progress in Nuclear Energy, Ser. I, Vol. 2, PP 183–221, Pergamon Press, London, 1958.

    Google Scholar 

  2. Beckurts, K.H., and Wirtz, K., Neutron Physics, Springer-Verlag, Berlin, 1964.

    MATH  Google Scholar 

  3. Beckurts, K.H., “A Review of Pulsed Neutron Experiments in Nonmultiplying Media”, Proceedings IAEA Conference, Pulsed Neutron Research, Karlsruhe, Vol. I, PP 3–33, 1965.

    Google Scholar 

  4. Cokinos, D., “The Physics of Pulsed Neutrons,” Advances in Nuclear Science and Technology,” Vol. 3, PP 1–142, 1966.

    Google Scholar 

  5. Corngold, N., “Quasi-Exponential Decay of Neutron Fields,” Advances in Nuclear Science and Technology, Vol. 8, PP 1–46, 1975.

    Google Scholar 

  6. Sjöstrand, N.G., Mednis, J., and Nilsson, T., “Geometric Buckling Measurements Using the Pulsed Neutron Source Method,” Arkiv Fysik 15, PP 471–482, 1959.

    Google Scholar 

  7. Sjöstrand, N.G., “On the Theory Underlying Diffusion Measurements with Pulsed Neutron Sources,” Arkiv Fysik 15, PP 147–158, 1959.

    Google Scholar 

  8. Case, K.M., and Zweifel, P.F., Linear Transport Theory, Addison-Wesley, Reading, Massachusetts, 1967.

    MATH  Google Scholar 

  9. Davison, B., Neutron Transport Theory, Clarendon Press, Oxford, 1957.

    MATH  Google Scholar 

  10. Cohen, E.R., “A Numerical Calculation of the Milne Problem Extrapolation Length,” Nuclear Science Engineering, 42, PP 231–232, 1970.

    Google Scholar 

  11. Pomraning, G.C., and Lathrop, K.D., “The Extrapolated End Point for the Milne Problem,” Nuclear Science Engineering 29, PP 305–308, 1967.

    Google Scholar 

  12. Case, K.M., de Hoffman, F., and Placzek, G.., Introduction to the Theory of Neutron Diffusion, Los Alamos Scientific Laboratory, Los Alamos, 1953.

    Google Scholar 

  13. Marshak, R.E., “The Milne Problem for a Large Plane Slab With Constant Source and Anisotropic Scattering,” Physical Review 72, PP 47–50, 1947.

    Article  MathSciNet  MATH  Google Scholar 

  14. von Dardel, G., and Sjöstrand, N.G., “Diffusion Parameters of Thermal Neutrons in Water,” Physical Review 96, PP 1245–1249, 1954.

    Article  Google Scholar 

  15. Williams, M.M.R., “Space-Energy Separability in Pulsed Neutron Systems,” Journal Nuclear Energy 17, PP 55–66, 1963.

    Google Scholar 

  16. Carlvik, I., “Monoenergetic Critical Parameters and Decay Constants for Small Homogeneous Spheres and Thin Homogeneous Slabs,” Nuclear Science Engineering 31, PP 295–303, 1968.

    Google Scholar 

  17. Kladnik, R., “A Variational Approach to the Time-Dependent Slab,” Nukleonik 6, PP 147–153, 1964.

    Google Scholar 

  18. Judge, F.D., and Daitch, P.B., “Time-Dependent Flux in Small Assemblies,” Nuclear Science Engineering 20, PP 428–435, 1964.

    Google Scholar 

  19. Goldschmidt, P., “The Extrapolation Length for Monoenergetic Neutrons in Slabs. Variational Calculations,” Nukleonik 10, PP 332–334, 1967.

    Google Scholar 

  20. Erdmann, R.C., and Shapiro, J.L., “The Extrapolation Distance for Monoenergetic Neutrons. An Exact Calculation,” Nukleonik 9. PP 302–303, 1967.

    Google Scholar 

  21. Ghatak, A.K., and Ahmed, F., “Asymptotic Solutions in Transport Theory. Part I — One Velocity with Isotropic Scattering,” Journal Nuclear Energy 20, PP 939–951, 1966.

    Google Scholar 

  22. Mockel, A., “Invariant Imbedding and Polyenergetic Neutron Transport Theory. Part II — Numerical Results,” Nuclear Science Engineering 29, PP. 51–57, 1967.

    Google Scholar 

  23. Doming, J. “Thermal-Neutron Decay in Small Systems,” Nuclear Science Engineering 33, PP 65–80, 1968.

    Google Scholar 

  24. Wood, J., and Williams, M.M.R., “Extrapolation Distances in Thermal Neutron Systems. I. The Pulsed Source Experiment,” Journal Nuclear Energy 25, PP 101–112, 1971.

    Article  Google Scholar 

  25. Sjöstrand, N.G., and Dahl, E.B., “Accurate Extrapolation Lengths for Pulsed Monoenergetic Neutrons in Slabs and Spheres,” Nuclear Science Engineering 57, PP 84–86, 1975.

    Google Scholar 

  26. Kaper, H.G., Lindeman, A.J., and Leaf, G.K., “Benchmark Values for the Slab and Sphere Criticality Problem in One-Group Neutron Transport Theory,” Nuclear Science Engineering 54, PP 94–99, 1974.

    Google Scholar 

  27. Westfall, R.M., Metcalf, D.R., “Singular Eigenfunction Solution of the Monoenergetic Neutron Transport Equation for Finite Radially Reflected Critical Cylinders,” Nuclear Science Engineering 52, PP 1–11, 1973.

    Google Scholar 

  28. Hembd, H., “The Integral Transform Method for Neutron Transport Problems,” Nuclear Science Engineering 40, PP 224–238, 1970.

    Google Scholar 

  29. Kavenoky, A., “The CN Method in Cylindrical Geometry and One-Velocity Theory,” Proceedings Conference on Computational Methods in Nuclear Engineering, CONF-750413, Vol. II, PP III-67 to III-83, 1975.

    Google Scholar 

  30. Sahni, D.C., “The Integral Transform Method for Two-and Three-Dimensional Neutron-Transport Problems, Proceedings IAEA Seminar Numerical Reactor Calculations, Wien, PP 197–209, 1972.

    Google Scholar 

  31. Horie, J., and Nishihara, H., “Numerical Solution to Critical Problem of Finite Cylindrical Reactors by Variational Method,” Journal Nuclear Science Technology, 11, PP 359–368, 1974.

    Article  Google Scholar 

  32. Lopez, W.M., and Beyster, J.R., “Measurement of Neutron Diffusion Parameters in Water by the Pulsed Neutron Method,” Nuclear Science Engineering 12, PP 190–202, 1962.

    Google Scholar 

  33. Davison, B., Milne Problem in a Multiplying Medium with a Linearly Anisotropic Scattering, National Research Council of Canada, Report CRT-358, 1946.

    Google Scholar 

  34. Lois, L., and Goldstein, H., “Extrapolation Distance for Anisotropic Scattering,” Nuclear Science Engineering 29, PP 148–149, 1967.

    Google Scholar 

  35. Su, S.F., Extrapolation Distance Calculations for Transport with Anisotropic Scattering, Thesis, University of Washington, 1970.

    Google Scholar 

  36. Su, S.F., and McCormick, N.J., “Extrapolation Distance Calculations,”Journal Nuclear Energy 25, PP 657–658, 1971.

    Article  Google Scholar 

  37. Thielheim, K.O., and Claussen, K., “Comments on Half-Space Problems with Linear Anisotropy of Scattering,” Kernenergie 16, PP 321–328, 1973.

    Google Scholar 

  38. Thielheim, K.O., Private Communication, 1974.

    Google Scholar 

  39. Mark, J.C., Milne’s Problem for Anisotropic Scattering, Montreal Laboratory Report MT-26, 1943.

    MATH  Google Scholar 

  40. Shure, F., and Natelson, M., “Anisotropic Scattering in Half-Space Transport Problems,” Annals of Physics 26, PP 274–291, 1964.

    Article  MathSciNet  Google Scholar 

  41. Vanmassenhove, F.R., “Exact Analytical Solution and Numerical Treatment of the Milne Problem with Absorption and Anisotropic Scattering,” Physica 42, PP 179–204, 1969.

    Article  Google Scholar 

  42. van de Hulst, H.C., “Asymptotic Fitting, A Method for Solving Anisotropic Transfer Problems in Thick Layers,” Journal Computational Physics 3, PP 291–306, 1968.

    Article  Google Scholar 

  43. Claussen, K., and Thielheim, K.O., “Comments on Half-Space Problems with Quadratic Anisotropy of Scattering,” Kernenergie 17, PP 253–258, 1974.

    Google Scholar 

  44. Carlvik, I., Critical Parameters for Homogeneous Slabs and Spheres in the Constant Cross-Section Approximation and with Linearly Anisotropic Scattering, AB Atomenergi Report RFR-228, 1963.

    Google Scholar 

  45. Lathrop, K.D., and Leonard, A., “Comparisons of Exact and SN Solutions of the Monoenergetic Critical Equation with Anisotropic Scattering,” Nuclear Science Engineering 22. PP 115–118, 1965.

    Google Scholar 

  46. Sjöstrand, N.G., “Eigenvalues in Time-Dependent Monoenergetic Neutron Systems with Anisotropic Scattering,” Journal Nuclear Science Technology 12, PP 256–257, 1975.

    Article  Google Scholar 

  47. Sjöstrand, N.G., “Complex Eigenvalues of Monoenergetic Neutron Transport Equation with Anisotropic Scattering,” Journal Nuclear Science Technology 13, PP 81–84, 1976.

    Article  Google Scholar 

  48. Williams, M.M.R., The Slowing Down and Thermalization of Neutrons, North-Holland Publishing Company, Amsterdam, 1966.

    Google Scholar 

  49. Rönnberg, G., A Monte Carlo Investigation of Quasi-Exponential Decay of Pulsed Neutron Fields in Water, Department of Reactor Physics, Chalmers University of Technology, Report CTH-RF-25, 1973.

    Google Scholar 

  50. Ahmed, F., and Ghatak, A.K., “On the Space-Energy Separability of the Fundamental Mode of the Neutron Transport Operator with Isotropic Scattering,” Nuclear Science Engineering 33, PP 106–118, 1968.

    Google Scholar 

  51. Beynon, T.D., “On the Concept of Energy-Dependent Buckling in Multi-group Diffusion Theory,” Journal Nuclear Energy, 25, PP 503–511, 1971.

    Article  Google Scholar 

  52. Ahmed, F., and Mohan, R., “Effect of Shape of the Assembly on the Decay Constant in Pulsed-Neutron Experiments,” Nuclear Science Engineering 51, PP 335–337, 1973.

    Google Scholar 

  53. Nelkin, M., “Milne’s Problem for a Velocity-Dependent Mean Free Path,” Nuclear Science Engineering 7, PP 552–553, 1960.

    Google Scholar 

  54. Boffi, V.C., Molinari, V.G., and Parks, D.E., “On the Decay of Neutrons in a Subcritical Assembly,” Journal Nuclear Energy 16, PP 395–403, 1962.

    Google Scholar 

  55. Kladnik, R., and Kuscer, I., “Milne’s Problem for Thermal Neutrons in a Nonabsorbing Medium,” Nuclear Science Engineering 11, PP 116–120, 1961.

    Google Scholar 

  56. Kladnik, R.,”Milne’s Problem for Thermal Neutrons,” Proceedings Brookhaven Conference on Neutron Thermalization, BNL 719, Vol. IV, PP 1211–1231, 1962.

    Google Scholar 

  57. Weiss, Z., “The PNLJ Approximation of Neutron Thermal-ization in Heavy Gas Moderator,” Nukleonika 6, PP 703–716, 1961.

    Google Scholar 

  58. Williams, M.M.R., “The Energy-Dependent Milne Problem with a Simple Scattering Kernel,” Nuclear Science Engineering 18, PP 260–270, 1964.

    Google Scholar 

  59. Williams, M.M.R., “A Solution of the Thermal Neutron Milne Problem by Perturbation Theory,” Nuclear Science Engineering 19, PP 353–358, 1964.

    Google Scholar 

  60. Kladnik, R., “The Asymptotic Angular-Dependent Leakage Spectrum of Thermal Neutrons,” Nuclear Science Engineering 23, PP 291–298, 1965.

    Google Scholar 

  61. Arkuszewski, J., “Milne Problem for Thermal Neutrons with Absorption,” Nuclear Science Engineering 27, PP 104–119, 1967.

    Google Scholar 

  62. Eisenhauer, C., “Some Results on the Energy-Dependent Milne Problem for Thermal Neutrons and Light Gases,” Nuclear Science Engineering 19, PP 95–101, 1964.

    Google Scholar 

  63. Gelbard, E., Davies, J., and Pearson, J., Space-Energy Separability in the Thermal Neutron Group, Westinghouse Electric Corporation Report WAPD-T-1065, 1959 (also, Trans. American Nuclear Soc. 2:2, Page 95, 1959).

    Google Scholar 

  64. Gelbard, E., and Davies, J., “The Behavior of Extrapolation Distances in Die-Away Experiments,” Nuclear Science Engineering 13, PP 237–244, 1962.

    Google Scholar 

  65. Elkert, J.,”Determination of the Diffusion Parameters for Thermal Neutrons in Water Using the Pulsed Method and Spherical Geometries,”Department of Reactor Physics, Chalmers University of Technology Report CTH-RF-12, 1967 (also, Nukleonik 11, PP 159–162, 1968).

    Google Scholar 

  66. Emon, D., A Study of Extrapolation Lengths in Thin Slabs in High Order P N Approximations, Thesis, Rensselaer Polytechnic Institute, 1965.

    Google Scholar 

  67. Schmidt, E., and Gelbard, E.M., Improved P 3 Vacuum Boundary Conditions and Their Use in Pulse Calculations, Westinghouse Electric Corporation Report WAPD-T-1788, 1965.

    Google Scholar 

  68. Vértes, P., “Some Problems Concerning the Theory of Pulsed Neutron Experiments,” Nuclear Science Engineering 16, PP 363–368, 1963.

    Google Scholar 

  69. Walker, J., Brown, J.B.C., and Wood, J., “Extrapolation Distances for Pulsed Neutron Experiments,” Proceedings IAEA Conference Pulsed Neutron Research, Karlsruhe, Vol. I, PP 49–63, 1965.

    Google Scholar 

  70. Doming, J., “Extrapolation Distances and Diffusion Parameters via Pulsed-Neutron Analysis,” Nuclear Science Engineering 41, PP 22–28, 1970.

    Google Scholar 

  71. Wood, J., and Williams, M.M.R., “The Validity of the Buckling Concept and the Importance of Spatial Transients in the Pulsed Neutron Experiment,” Journal Nuclear Energy 21, PP 113–130, 1967.

    Article  Google Scholar 

  72. Williams, M.M.R., “The Influence of Specular and Diffuse Reflection on the Extrapolation Distance,” Atomkernenergie 25, PP 19–23, 1975.

    Google Scholar 

  73. Campbell, E.C., and Stelson, P.H., Measurement of Thermal-Neutron Relaxation Times in Subcritical Systems, Oak Ridge National Laboratory Report ORNL-2204, PP 34–36, 1957.

    Google Scholar 

  74. DeJuren, J.A., Stooksberry, R., and Carrol, E.E., “Measurements of Extrapolation Lengths in Pulsed Water Systems,” Proceedings Brookhaven Conference on Neutron Thermalization, BNL 719, Vol. III, PP 895–899, 1962.

    Google Scholar 

  75. Gaerttner, E.R., Fullwood, R.R., Menzel, J.H., and Toth, G.P., “Measurements of the Spatially-Dependent Asymptotic Spectra in Water and Polyethylene,” Proceedings IAEA Conference Pulsed Neutron Research, Karlsruhe, Vol. I, PP 501–515, 1965.

    Google Scholar 

  76. Shalev, S., Shani, G., Fishelson, Z, and Ronen, Y., “Measurement of the Thermal-Neutron Extrapolation Length in a Pulsed Water System,” Nuclear Science Engineering 35, PP 259–266, 1969.

    Google Scholar 

  77. Bowen, R.A., and Scott, M.C., “Neutron Diffusion Measurements in Water from 18°C to 280°C,” British Journal Applied Physics (J. Phys. D), Ser. 2, Vol. 2, PP 401–411, 1969.

    Google Scholar 

  78. Küchle, M., “Messung der Temperaturabhängigkeit der Neutronen-Diffusion in Wasser und Diphyl mit der Impulsmetode,” Nukleonik 2, PP 131–139, 1960.

    Google Scholar 

  79. Demanins, F., Rado, V., and Vinci, F., Determinazione dei Parametri di Diffusione dei Mezzi Moderanti con il Metodo Della Sorgente di Neutroni Pulsata, Dowtherm A, Comitato Nazionale Energia Nucleare Report RT/FI(63)22, 1963.

    Google Scholar 

  80. Davis, S.K., DeJuren, J.A., and Reier, M., “Pulsed Decay and Extrapolation-Length Measurements in Graphite,” Nuclear Science Engineering 23, PP 74–81, 1965.

    Google Scholar 

  81. Ritchie, A.I.M., “The Measurement of Extrapolation Distances in Pulsed BeO Assemblies,” Journal Nuclear Energy 22, PP 717–734, 1968.

    Article  Google Scholar 

  82. Ritchie, A.I.M., and Moo, S.P., “Definition and Use of Buckling,” Journal Nuclear Science Technology 11, PP 535–544, 1974.

    Article  Google Scholar 

  83. Hall, R.S., Scott, S.A., and Walker, J., “Neutron Diffusion in Small Volumes of Water: Pulsed Source Measurements,” Proceedings Physical Society 79, PP 257–263, 1962.

    Article  Google Scholar 

  84. Curet, H.D., Hwu, Y.P., and Robeson, A., “Effect of Sample Shape on Decay-Constant Measurements in Paraffin,” Transactions American Nuclear Society, 7, PP 72–73, 1964.

    Google Scholar 

  85. Freed, D., “The Effect of Sample Geometry on Decay Constant Measurements in Water Using the Pulsed Neutron Technique,” Thesis, University of New Mexico, 1965, (also, Transactions American Nuclear Society, 8, PP 433–434, 1965).

    Google Scholar 

  86. Nielsen, K., “Data Evaluation and Shape Dependence in the Pulsed Neutron Technique,” Thesis, University of New Mexico, 1968.

    Google Scholar 

  87. Kerner, I.O., Kiesewetter, H., and von Weber, S., “Numerische Resultate zu den Eigenwerten und Eigenfunktionen der Neutronentransportgleichung für eine Platte,” Kernenergie, 10, PP 299–306, 1967.

    Google Scholar 

  88. Hartman, J., “A Method to Solve the Integral Transport Equation Employing a Spatial Legendre Expansion,” Report EUR 5339e, 1975.

    Google Scholar 

  89. Sanchez, R., “Generalisation de la methode d’Asaoka pour le traitement d’une loi de choc linéairement anisotrope: données de référence en géometrie cylindrique,” Report CEA-N-1831, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Sjöstrand, N.G. (1977). Extrapolation Lengths in Pulsed Neutron Diffusion Measurements. In: Henley, E.J., Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9913-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9913-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9915-5

  • Online ISBN: 978-1-4613-9913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics