Skip to main content

Optimal Control Applications in Nuclear Reactor Design and Operation

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science and Technology ((ACRE,volume 10))

Abstract

Modern control theory has developed over the past 15 years. The state variable representation of physical systems has come into wide use in dealing with nonlinear and time-varying systems. The classical calculus of variations (1, 2, 3) has been modified and extended (4–7) to yield procedures for determining the necessary conditions for optimality. The Pontryagin maximum principle (7) is a well-known example of such extensions. Dynamic programming, (8, 9) an alternate approach to optimal control problems which has much in common with the variational and Hamilton-Jacobi formulations but is more amenable to stochastic systems and to straightforward solutions by digital computer, has also been developed. Mathematicians have applied functional analyses to optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bliss, G.A., Calculus of Variations, Open Court Publishing Co., LaSalle, Illinois, 1962.

    Google Scholar 

  2. Gelfand, I.M. and Fomin, S.V., Calculus of Variations, Prentice-Hall, Englewood Cliffs, New Jersey, 1963.

    Google Scholar 

  3. Elsgolc, L.E., Calculus of Variations, Addison Wesley, Reading, Massachusetts, 1962.

    Google Scholar 

  4. Berkovitz, L.D., Journal of Mathematical Analysis and Applications, 3, PP 145–169, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  5. Berkovitz, L.D., Journal of Mathematical Analysis and Applications, 5, PP 488–498, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  6. Balakrishnan, A.V. and Newstadt, L.W., Editors, Computing Methods in Optimization Problems, Academic Press, New York, 1964.

    MATH  Google Scholar 

  7. Pontryagin, L.S., et al., The Mathematical Theory of Optimal Processes, Interscience, New York, 1962.

    MATH  Google Scholar 

  8. Bellman, R., Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1957.

    MATH  Google Scholar 

  9. Bellman, R., and Dreyfus, S., Applied Dynamic Programming, Princeton University Press, Princeton, N.J., 1962.

    MATH  Google Scholar 

  10. Leitman, G., Editor, Optimization Techniques, Academic Press, New York, 1962.

    Google Scholar 

  11. Merriam, C.W., Optimization Theory and The Design of Feedback Control Systems, McGraw-Hill, N. Y., 1964.

    Google Scholar 

  12. Sage, A.P., Optimum Systems Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1968.

    MATH  Google Scholar 

  13. Bryson, A.E., Jr. and Ho, Y.C., Applied Optimal Control, Blaisdell, Waltham, Massachusetts, 1969.

    Google Scholar 

  14. Mohler, R.R. and Shen, C.N., Optimal Control of Nuclear Reactors, Academic Press, New York, 1970.

    Google Scholar 

  15. Stacey, W.M., Jr., Nuclear Science and Engineering, 33, PP 249–267, 1968.

    Google Scholar 

  16. Stacey, W.M., Jr., Nuclear Science and Engineering, 39, PP 226–230, 1970.

    Google Scholar 

  17. Malan, G.F. and Koen, B.V., Nuclear Science and Engineering, 46, PP 385–393, 1971.

    Google Scholar 

  18. Ash, M., Bellman, R. and Kalaba, R., Nuclear Science and Engineering, 6, PP 152–156, 1959.

    Google Scholar 

  19. Rosztoczy, Z.R. and Weaver, L.E., Nuclear Science and Engineering, 20, PP 318–323, 1964.

    Google Scholar 

  20. Roberts, J.J. and Smith, H.P., Jr., Nuclear Science and Engineering, 22, PP 470–478, 1965.

    Google Scholar 

  21. Roberts, J.J. and Smith, H.P., Jr., Nuclear Science and Engineering, 23, PP 397–399, 1965.

    Google Scholar 

  22. Lewins, J., Nuclear Science and Engineering, 23, PP 404–406, 1965.

    Google Scholar 

  23. Roberts, J.J. and Smith, H.P., Jr., Nuclear Science and Engineering, 24, Page 95, 1966.

    Google Scholar 

  24. Ash, M., Nuclear Science and Engineering, 24, PP 77–86, 1966.

    Google Scholar 

  25. Ash, M., Optimal Shutdown and Control of Nuclear Reactors, Academic Press, New York, 1966.

    Google Scholar 

  26. Lewins, J. and Babb, A.L., “Optimum Nuclear Reactor Control Theory,” Advances in Nuclear Science and Technology, 4, Academic Press, New York, 1968.

    Google Scholar 

  27. Salo, S., Nuclear Science and Engineering, 50, PP 46–52, 1973.

    Google Scholar 

  28. Wiberg, D.M., Optimal Feedback Control of Spatial Xenon Oscillations in a Nuclear Reactor, Ph.D. Thesis, California Inst. of Technology, Pasadena, Calif., 1965.

    Google Scholar 

  29. Wiberg, D.M., Nuclear Science and Engineering, 27, PP 600–604, 1967.

    Google Scholar 

  30. Stacey, W.M., Jr., Nuclear Science and Engineering, 33 PP 162–168, 1968.

    Google Scholar 

  31. Stacey, W.M., Jr., Nuclear Science and Engineering, 38, PP 229–243, 1969.

    Google Scholar 

  32. Christie, A.M. and Poncelet, C.G., Nuclear Science and Engineering, 51, PP 10–24, 1973.

    Google Scholar 

  33. Bauer, D.C. and Poncelet, C.G., Nuclear Technology, 21, 1974.

    Google Scholar 

  34. Hurwitz, H., Jr., “Note on a Theory of Minimum Weight Shields,” KAPL-1441, 1957.

    Google Scholar 

  35. Troubetzkoy, E.S., “Minimum Weight Shield Synthesis,” UNC-5017A, 1962.

    Google Scholar 

  36. Lewins, J., Trans. Am. Nuclear. Society, 8, Page 492, 1965.

    Google Scholar 

  37. Terney, W.B. and Fenech, H., Nuclear Applications, 3, PP 46–52, 1967.

    Google Scholar 

  38. Goertzel, G., Journal of Nuclear Energy, 2, PP 193–201, 1956.

    Google Scholar 

  39. Wilkins, J.E., Jr., Nuclear Science and Engineering, 6, PP 229–232, 1959.

    Google Scholar 

  40. Kochurov, B.P., Atomnaya Energiya, 20, PP 243–247, 1966.

    Google Scholar 

  41. Zaritskaya, T.S. and Rudik, A.P., Atomnaya Energiya, 22, PP 6–10, 1967.

    Google Scholar 

  42. Zaritskaya, T.S. and Rudik, A.P., Atomnaya Energiya, 23, PP 218–222, 1967.

    Google Scholar 

  43. Axford, R.A., “Constrained Optimal Programming Problems in Reactor Statics,” LA-4267, Los Alamos, 1969.

    Google Scholar 

  44. Gandini, A., Salvatores, M. and Sena, G., Journal of Nuclear Energy, 23, PP 469–476, 1969.

    Article  Google Scholar 

  45. Goldschmidt, P. and Quenon, J., Nuclear Science and Engineering, 39, PP 311–319, 1970.

    Google Scholar 

  46. Terney, W.B., Nuclear Science and Engineering, 45, PP 226–230, 1971.

    Google Scholar 

  47. Goldschmidt, P., Nuclear Science and Engineering, 49, PP 263–273, 1972.

    Google Scholar 

  48. Goldschmidt, P., Nuclear Science and Engineering, 50, PP 153–163, 1973.

    Google Scholar 

  49. Tzanos, C.P., Gyftopoulos, E.P. and Driscoll, M.J., Nuclear Science and Engineering, 52, Page 84, 1973.

    Google Scholar 

  50. Haling, R.K., “Operating Strategy for Maintaining an Optimum Power Distribution Throughout Life,” Proc. ANS Topical Meeting on Nuclear Performance of Power Cores in San Francisco, California, TID-7672, PP 205–210, 1963.

    Google Scholar 

  51. Crowther, R.L., Trans. American Nuclear Society, 6, Page 276, 1963.

    Google Scholar 

  52. Crowther, R.L., “Extensions of the Power Control Method for Solution of Large Inhomogeneous Reactor Problems,” Proceedings of the Conference on the Application of Computing Methods to Reactor Problems, Argonne National Laboratory, ANL-7050, PP 487–502, 1965.

    Google Scholar 

  53. Suzuki, A. and Kiyose, R., Trans. American Nuclear Society, 11, Page 441, 1968.

    Google Scholar 

  54. Terney, W.B. and Fenech, H., Nuclear Science and Engineering, 39, PP 109–114, 1970.

    Google Scholar 

  55. Motoda, H. and Kawai, T., Nuclear Science and Engineering, 39, PP 114–118, 1970.

    Google Scholar 

  56. Suzuki, A. and Kiyose, R., Nuclear Science and Engineering, 44, PP 121–134, 1971.

    Google Scholar 

  57. Wade, D.C. and Terney, W.B., Nuclear Science and Engineering, 45, PP 199–217, 1971.

    Google Scholar 

  58. Motoda, H., Nuclear Science and Engineering, 46, PP 88–111, 1971.

    Google Scholar 

  59. Terney, W.B. and Wade, D.C., “Determination of Optimal K-Infinity Mismatch Curves Via Modern Control Theory,” Proceedings American Nuclear Society National Topical Meeting on New Developments in Reactor Physics and Shielding, CONF-720901, Kiamesha Lake, New York, 1972.

    Google Scholar 

  60. Wall, I. and Fenech, H., Nuclear Science and Engineering, 22, PP 285–297, 1965.

    Google Scholar 

  61. Stover, R.L. and Sesonske, A., Trans. American Nuclear Society, 11, Page 442, 1968.

    Google Scholar 

  62. Stover, R.L. and Sesonske, A., Journal of Nuclear Energy, 23, PP 673–682, 1969.

    Article  Google Scholar 

  63. Melice, M., Nuclear Science and Engineering, 37, PP 451–477, 1969.

    Google Scholar 

  64. Fagan, J.R. and Sesonske, A., Journal of Nuclear Energy, 23, PP 683–696, 1969.

    Article  Google Scholar 

  65. Suzuki A. and Kiyose, R., Nuclear Science and Engineering, 46, PP 112–130, 1971.

    Google Scholar 

  66. Sauar, T.O., Nuclear Science and Engineering, 46, PP 274–283, 1971.

    Google Scholar 

  67. Kawai, T. and Kiguchi, T., Nuclear Science and Engineering, 43, PP 342–344, 1971.

    Google Scholar 

  68. Motoda, H., Nuclear Science and Engineering, 49, PP 515–524, 1972.

    Google Scholar 

  69. Hoshino, T., Nuclear Science and Engineering, 49, PP 59–71, 1972.

    Google Scholar 

  70. Young, G., Nuclear News, 7, No. 11, Page 23, 1964.

    Google Scholar 

  71. Märkl, H., “Untersuchungen Über langfristig optimale Reaktorstrategien unter Berucksichtung des begrenzten Umfangs der Uranreserven, Teil I, Beschreibung des Optimierungsmodells,” Nukleonik, 10, Page 207, 1967.

    Google Scholar 

  72. Finnemann, H., Gulgeshell, W. and Märkl, H., Nukleonik 12, Page 263, 1969.

    Google Scholar 

  73. Widner, H., Mason, E.A. and MacAvoy, P.W., Trans. American Nuclear Society, 13, Page 785, 1970.

    Google Scholar 

  74. Widner, H., Mason, E.A. and MacAvoy, P.W., Trans. American Nuclear Society, 13, Page 784, 1970.

    Google Scholar 

  75. Nelson, P., Jr. and Young, G., Nuclear Science and Engineering, 46, PP 140–146, 1971.

    Google Scholar 

  76. Fadilah, S.M. and Lewins, J., “Optimal Control Rod Programs in Power Reactors,” Annals of Nuclear Energy 2, Page 443, Pergamon, Oxford, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Terney, W.B., Wade, D.C. (1977). Optimal Control Applications in Nuclear Reactor Design and Operation. In: Henley, E.J., Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9913-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9913-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9915-5

  • Online ISBN: 978-1-4613-9913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics