Advertisement

Analytic Insights into Intermediate-Energy Hadron-Nucleus Scattering

  • R. D. Amado
Part of the Advances in Nuclear Physics book series (ANP)

Abstract

Remarkable data exists for intermediate-energy hadron scattering from nuclei; however, the role of theory is not simply to fit that data but to understand it. Nuclear physics is not yet at a stage where the probe + A-body problem can be formulated and solved from first principles to calculate the scattering observables, and even if it could, the numerical complexity might well obscure the simplicity of the underlying physics. In recent years, much progress in fitting data has, in fact, been made in numerically calculating scattering observables by using optical-model approaches and exploiting the power of modern computers. But the underlying physics, the dominant role of the nuclear geometry, and the concomitant relationship among different reactions on the same target do not emerge simply from these calculations. To see all these features requires an analytic approach. Traditionally, physics has been willing to sacrifice some degree of detail and precision for analytic insight, particularly if the approximations involved were part of a systematic scheme with full control over errors. It is just such an analytic approach to intermediate-energy hadron-nucleus scattering that we outline here.

Keywords

Elastic Scattering Inelastic Scattering Transition Density Channel Coupling Hankel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    G. W. Hoffman, Phys. Rev. C 21, 1488 (1980).ADSCrossRefGoogle Scholar
  2. 2.
    G. S. Blanpied, Phys. Rev. C 18, 1436 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    G. W. Hoffman, Phys. Rev. Lett. 40, 1256 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    M. S. Hussein and K. W. McVoy, Progress in Particle and Nuclear Physics,forthcoming.Google Scholar
  5. 5.
    c.f. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford England (1975).Google Scholar
  6. 6.
    R. D. Amado, J. P. Dedonder, and F. Lenz, Phys. Rev. C 21, 647 (1980) (ADL).Google Scholar
  7. 7.
    R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126 766 (1982).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    c.f. K. W. Ford and J. A. Wheeler, Ann. Phys. 7, 259 (1959).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    For a full discussion, see R. J. Glauber, in: Lectures in Theoretical Physics ( W. E. Brittin and L. G. Bunham, eds.) Interscience, New York (1959).Google Scholar
  10. 10.
    S. J. Wallace, in: Advances in Nuclear Physics, Vol. 12, (J. W. Negele and E. Vogt, eds.) p. 135, Plenum, New York (1981).CrossRefGoogle Scholar
  11. 11.
    The discussion and notation in this section follow Ref. 6 (ADL).Google Scholar
  12. 12.
    Freedom, Corfu, Egger, Gretillat, Lunke, Piffaretti, Schwarz, Junsen, and Perrin, Nucl. Phys. A326, 385 (1979).CrossRefGoogle Scholar
  13. 13.
    R. M. Ikeda and J. A. McNeil, Phys. Rev. C 24, 2754 (1981)ADSCrossRefGoogle Scholar
  14. J. A. McNeil, Phys. Rev. C 23, 2791 (1981).ADSCrossRefGoogle Scholar
  15. 14.
    The discussion and notation in this section follow Amado, Lenz, McNeil, and Sparrow, Phys. Rev. C 22, 2094 (1980) (ALMS).Google Scholar
  16. 15.
    D. A. Sparrow, R. D. Amado, and J. A. McNeil, Phys. Rev. Lett. 48, 124 (1982).ADSCrossRefGoogle Scholar
  17. 16.
    R. D. Amado, J. A. McNeil, and D. A. Sparrow, Phys. Rev. C 23, 2186 (1981).ADSCrossRefGoogle Scholar
  18. 17.
    R. D. Amado, J. A. McNeil, and D. A. Sparrow, Phys. Rev. C 25, 13 (1982).ADSCrossRefGoogle Scholar
  19. 18.
    R. D. Amado and D. A. Sparrow, Phys. Rev. C 29, in press.Google Scholar
  20. 19.
    c.f. G. W. Hoffman, Phys. Rev. Lett. 47, 1436 (1981)ADSCrossRefGoogle Scholar
  21. M. L. Barlett, Phys. Rev. C 27, 682 (1983).ADSCrossRefGoogle Scholar
  22. 20.
    B. C. Clark, R. L. Mercer, and P. Schwandt, Phys. Lett. 122B, 211 (1983).CrossRefGoogle Scholar
  23. 21.
    The discussion and notation in this section follow R. D. Amado, J. A. McNeil, and D. A. Sparrow, Phys. Rev. C 23, 2114 (1981) (AMS); see also Ref. 22.Google Scholar
  24. 22.
    J. A. McNeil, D. A. Sparrow, and R. D. Amado, Phys. Rev. C 26, 1141 (1982).ADSCrossRefGoogle Scholar
  25. 23.
    J. P. Auger and R. J. Lombard, Nucl. Phys. A316, 205 (1979).CrossRefGoogle Scholar
  26. 24.
    P. Osland and R. J. Glauber, Nucl. Phys. A326, 205 (1979).Google Scholar
  27. 25.
    G. Bertsch and R. Schaeffer, J. Phys. (Paris) 40, 1 (1979).CrossRefGoogle Scholar
  28. 26.
    J. A. McNeil and D. A. Sparrow, Phys. Rev. C 23, 2124 (1981).ADSCrossRefGoogle Scholar
  29. 27.
    F. Todd Baker, Phys. Rev. Lett. 47, 1823 (1981).ADSCrossRefGoogle Scholar
  30. 28.
    D. A. Sparrow, Phys. Rev. C 29 in press.Google Scholar
  31. 29.
    J. R. Shepard, J. A. McNeil, and S. J. Wallace, Phys. Rev. Lett. 50, 1473 (1983).ADSGoogle Scholar
  32. 30.
    R. D. Amado, J. Piekarewicz, D. A. Sparrow, and J. A. McNeil, Phys. Rev. C 28, 2180 (1983)ADSCrossRefGoogle Scholar
  33. R. D. Amado, J. Piekarewicz, D. A. Sparrow, and J. A. McNeil, Phys. Rev. C 28, 1663 (1983).ADSCrossRefGoogle Scholar
  34. 31.
    J. Piekarewicz, R. D. Amado, D. A. Sparrow, and J. A. McNeil, Phys. Rev. C 28, 2392 (1983).ADSCrossRefGoogle Scholar
  35. 32.
    L. Ray, G. Blanpied, and R. Coker, Phys. Rev. C 20, 1236 (1979); and J. A. McGill, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • R. D. Amado
    • 1
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations