Skip to main content

Magnetic Characteristics and Measurements of Filamentary Nb-Ti Wire for the Superconducting Super Collider

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: An International Cryogenic Materials Conference Publication ((ACRE,volume 36))

Abstract

In synchrotron accelerator applications, such as the Superconducting Super Collider (SSC), superconducting magnets are cycled in magnetic field. Desirable properties of the magnets include field uniformity, field stability with time, small residual field, and fairly small energy losses upon cycling. This paper discusses potential sources of problems in achieving these goals, describes important magnetic characteristics to be considered, and reviews measurement techniques for magnetic evaluation of candidate SSC wires. Instrumentation that might be practical for use in a wire-fabrication environment is described. We report on magnetic measurements of prototype SSC wires and cables and speculate on causes for instability in multipole fields of dipole magnets constructed with such cables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. S. Gilbert, R. F. Althaus, P. J. Barale, R. W. Benjegerdes, M. A. Green, M. I. Green, and R. M. Scanlan, Magnetic field decay in model SSC dipoles, IEEE Trans. Magri: 25:1459 (1989).

    Article  Google Scholar 

  2. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and critical supercurrents, Phys. Rev. 129:528 (1963).

    Article  CAS  Google Scholar 

  3. M. N. Wilson, “Superconducting Magnets,” Oxford University Press, Oxford, U.K. (1983), pp. 171–174.

    Google Scholar 

  4. M. N. Wilson, “Superconducting Magnets,” Oxford University Press, Oxford, U.K. (1983),, pp. 139–140, pp. 194–197, p. 308.

    Google Scholar 

  5. L. F. Goodrich and S. L. Bray, Current capacity degradation in superconducting cable strands, IEEE Trans. Magn. 25:1949 (1989).

    Article  Google Scholar 

  6. E. W. Collings, Stabilizer design considerations in fine-filament Cu/NbTi composites, Adv. Cryo. Engr. (Materials) 34:867 (1988).

    CAS  Google Scholar 

  7. G. H. Morgan, Theoretical behavior of twisted muticore superconducting wire in a time-varying uniform magnetic field, J. Appl. Phys. 41:3673 (1970).

    Article  Google Scholar 

  8. D. A. Herrup, M. J. Syphers, D. E. Johnson, R. P. Johnson, A. V. Tollestrup, R. W. Hanft, B. C. Brown, M. J. Lamm, M. Kuchnir, and A. D. Mclnturff, Time variations of fields in superconducting magnets and their effects on accelerators, IEEE Trans. Magn. 25:1643.

    Google Scholar 

  9. R. W. Hanft, B. C. Brown, D. A. Herrup, M. J. Lamm, A. D. Mclnturff, and M. J. Syphers, Studies of time dependence of fields in Tevatron superconducting dipole magnets, IEEE Trans. Magn. 25:1647.

    Google Scholar 

  10. M. Kuchnir and A. V. Tollestrup, Flux creep in a Tevatron cable, IEEE Trans. Magn. 25:1839.

    Google Scholar 

  11. P. W. Anderson and Y. B. Kim, Hard superconductivity: Theory of the motion of Abrikosov flux lines, Rev. Mod. Phys. 36:39 (1964).

    Article  Google Scholar 

  12. S. S. Shen, Magnetic properties of multifilamentary Nb3Sn composites, in: “Filamentary A15 Superconductors,” M. Suenaga and A. F. Clark, eds., Plenum, New York (1980), pp. 309–320.

    Chapter  Google Scholar 

  13. C. P. Bean, Magnetization of high-field superconductors, Rev. Mod.Phys. 36:31 (1964).

    Article  Google Scholar 

  14. W. A. Fietz, Electronic integration technique for measuring magnetization of hysteretic superconducting materials, Rev. Sci. Instrum. 36:1621 (1965).

    Article  Google Scholar 

  15. M. N. Wilson, Electronic integration technique for measuring magnetization of hysteretic superconducting materials, Rev. Sci. Instrum. 36, pp. 243–245.

    Google Scholar 

  16. P. J. Flanders, Instrumentation for magnetic moment and hysteresis curve measurements, in: “Conference on Magnetism and Magnetic Materials,” American Institute of Electrical Engineers, New York (1957), T-91, pp. 315–317.

    Google Scholar 

  17. S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev.Sci. Instrum. 30:548 (1959).

    Article  Google Scholar 

  18. D. O. Smith, Development of a vibrating-coil magnetometer, Rev. Sci.Instrum. 27:261 (1956).

    Article  Google Scholar 

  19. K. Dwight, N. Menyuk, and D. Smith, Further development of the vibrating-coil magnetometer, J. Appl. Phys. 29:491 (1958).

    Article  Google Scholar 

  20. E. J. Cukauskas, D. A. Vincent, and B. S. Deaver Jr., Magnetic susceptibility measurements using a superconducting magnetometer, Rev. Sci. Instrum. 45:1 (1974).

    Article  CAS  Google Scholar 

  21. J. A. Good, A variable temperature high sensitivity SQUID magnetometer, in: “SQUID: Superconducting Quantum Interference Devices and their Applications,” H. D. Hahlbohm and H. Lübbig, eds., Walter de Gruyter, Berlin (1977), pp. 225–238.

    Google Scholar 

  22. D. A. Berkowitz and M. A. Schippert, Hall effect B-H loop recorder for thin magnetic films, J. Sci. Instrum. 43:56 (1966).

    Article  Google Scholar 

  23. D. J. Craik, The measurement of magnetization using Hall probes, J. Phys. E: Sci. Instrum. 1:1193 (1968).

    Article  Google Scholar 

  24. P. J. Flanders, A Hall sensing magnetometer for measuring magnetization, anisotropy, rotational loss and time effects, IEEE Trans. Magn. 21:1584 (1985).

    Article  Google Scholar 

  25. W. R. Abel, A. C. Anderson, and J. C. Wheatley, Temperature measurements using small quantities of cerium magnesium nitrate, Rev. Sci. Instrum. 35:444 (1964).

    Article  CAS  Google Scholar 

  26. R. B. Goldfarb and J. V. Minervini, Calibration of ac susceptometer for cylindrical specimens, Rev. Sci. Instrum. 55:761 (1984).

    Article  Google Scholar 

  27. J. R. Cave, A. Février, H. G. Ky, and Y. Laumond, Calculation of ac losses in ultra fine filamentary NbTi wires, IEEE Trans. Magn. 23:1732 (1987).

    Article  Google Scholar 

  28. A. K. Ghosh, W. B. Sampson, E. Gregory, and T. S. Kreilick, Anomalous low field magnetization in fine filament NbTi conductors, IEEE Trans. Magn. 23:1724 (1987).

    Article  Google Scholar 

  29. E. W. Collings, K. R. Marken Jr., M. D. Sumption, R. B. Goldfarb, and R. J. Loughran, AC loss measurements of two multifilamentary NbTi composite strands, paper AY-05, this conference.

    Google Scholar 

  30. D.-X. Chen and R. B. Goldfarb, Kim model for magnetization of type-II superconductors, J. Appl. Phys. 66:2510 (1989).

    Google Scholar 

  31. R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Evidence for two superconducting components in oxygen-annealed single-phase Y-Ba-Cu-O, Cryogenics 27:475 (1987).

    Article  CAS  Google Scholar 

  32. M. Nikolo and R. B. Goldfarb, Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Phys. Rev. B 39:6615 (1989).

    Article  CAS  Google Scholar 

  33. M. N. Wilson, Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Phys. Rev. B 39, pp. 176–181. (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Goldfarb, R.B., Spomer, R.L. (1990). Magnetic Characteristics and Measurements of Filamentary Nb-Ti Wire for the Superconducting Super Collider. In: Reed, R.P., Fickett, F.R. (eds) Advances in Cryogenic Engineering Materials . An International Cryogenic Materials Conference Publication, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9880-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9880-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9882-0

  • Online ISBN: 978-1-4613-9880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics