Advertisement

Magnetic Characteristics and Measurements of Filamentary Nb-Ti Wire for the Superconducting Super Collider

  • R. B. Goldfarb
  • R. L. Spomer
Part of the An International Cryogenic Materials Conference Publication book series (ACRE, volume 36)

Abstract

In synchrotron accelerator applications, such as the Superconducting Super Collider (SSC), superconducting magnets are cycled in magnetic field. Desirable properties of the magnets include field uniformity, field stability with time, small residual field, and fairly small energy losses upon cycling. This paper discusses potential sources of problems in achieving these goals, describes important magnetic characteristics to be considered, and reviews measurement techniques for magnetic evaluation of candidate SSC wires. Instrumentation that might be practical for use in a wire-fabrication environment is described. We report on magnetic measurements of prototype SSC wires and cables and speculate on causes for instability in multipole fields of dipole magnets constructed with such cables.

Keywords

Dipole Magnet Hysteresis Loss Filament Diameter Flux Creep Flux Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. S. Gilbert, R. F. Althaus, P. J. Barale, R. W. Benjegerdes, M. A. Green, M. I. Green, and R. M. Scanlan, Magnetic field decay in model SSC dipoles, IEEE Trans. Magri: 25:1459 (1989).CrossRefGoogle Scholar
  2. 2.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Magnetization and critical supercurrents, Phys. Rev. 129:528 (1963).CrossRefGoogle Scholar
  3. 3.
    M. N. Wilson, “Superconducting Magnets,” Oxford University Press, Oxford, U.K. (1983), pp. 171–174.Google Scholar
  4. 4.
    M. N. Wilson, “Superconducting Magnets,” Oxford University Press, Oxford, U.K. (1983),, pp. 139–140, pp. 194–197, p. 308.Google Scholar
  5. 5.
    L. F. Goodrich and S. L. Bray, Current capacity degradation in superconducting cable strands, IEEE Trans. Magn. 25:1949 (1989).CrossRefGoogle Scholar
  6. 6.
    E. W. Collings, Stabilizer design considerations in fine-filament Cu/NbTi composites, Adv. Cryo. Engr. (Materials) 34:867 (1988).Google Scholar
  7. 7.
    G. H. Morgan, Theoretical behavior of twisted muticore superconducting wire in a time-varying uniform magnetic field, J. Appl. Phys. 41:3673 (1970).CrossRefGoogle Scholar
  8. 8.
    D. A. Herrup, M. J. Syphers, D. E. Johnson, R. P. Johnson, A. V. Tollestrup, R. W. Hanft, B. C. Brown, M. J. Lamm, M. Kuchnir, and A. D. Mclnturff, Time variations of fields in superconducting magnets and their effects on accelerators, IEEE Trans. Magn. 25:1643.Google Scholar
  9. 9.
    R. W. Hanft, B. C. Brown, D. A. Herrup, M. J. Lamm, A. D. Mclnturff, and M. J. Syphers, Studies of time dependence of fields in Tevatron superconducting dipole magnets, IEEE Trans. Magn. 25:1647.Google Scholar
  10. 10.
    M. Kuchnir and A. V. Tollestrup, Flux creep in a Tevatron cable, IEEE Trans. Magn. 25:1839.Google Scholar
  11. 11.
    P. W. Anderson and Y. B. Kim, Hard superconductivity: Theory of the motion of Abrikosov flux lines, Rev. Mod. Phys. 36:39 (1964).CrossRefGoogle Scholar
  12. 12.
    S. S. Shen, Magnetic properties of multifilamentary Nb3Sn composites, in: “Filamentary A15 Superconductors,” M. Suenaga and A. F. Clark, eds., Plenum, New York (1980), pp. 309–320.CrossRefGoogle Scholar
  13. 13.
    C. P. Bean, Magnetization of high-field superconductors, Rev. Mod.Phys. 36:31 (1964).CrossRefGoogle Scholar
  14. 14.
    W. A. Fietz, Electronic integration technique for measuring magnetization of hysteretic superconducting materials, Rev. Sci. Instrum. 36:1621 (1965).CrossRefGoogle Scholar
  15. 15.
    M. N. Wilson, Electronic integration technique for measuring magnetization of hysteretic superconducting materials, Rev. Sci. Instrum. 36, pp. 243–245.Google Scholar
  16. 16.
    P. J. Flanders, Instrumentation for magnetic moment and hysteresis curve measurements, in: “Conference on Magnetism and Magnetic Materials,” American Institute of Electrical Engineers, New York (1957), T-91, pp. 315–317.Google Scholar
  17. 17.
    S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev.Sci. Instrum. 30:548 (1959).CrossRefGoogle Scholar
  18. 18.
    D. O. Smith, Development of a vibrating-coil magnetometer, Rev. Sci.Instrum. 27:261 (1956).CrossRefGoogle Scholar
  19. 19.
    K. Dwight, N. Menyuk, and D. Smith, Further development of the vibrating-coil magnetometer, J. Appl. Phys. 29:491 (1958).CrossRefGoogle Scholar
  20. 20.
    E. J. Cukauskas, D. A. Vincent, and B. S. Deaver Jr., Magnetic susceptibility measurements using a superconducting magnetometer, Rev. Sci. Instrum. 45:1 (1974).CrossRefGoogle Scholar
  21. 21.
    J. A. Good, A variable temperature high sensitivity SQUID magnetometer, in: “SQUID: Superconducting Quantum Interference Devices and their Applications,” H. D. Hahlbohm and H. Lübbig, eds., Walter de Gruyter, Berlin (1977), pp. 225–238.Google Scholar
  22. 22.
    D. A. Berkowitz and M. A. Schippert, Hall effect B-H loop recorder for thin magnetic films, J. Sci. Instrum. 43:56 (1966).CrossRefGoogle Scholar
  23. 23.
    D. J. Craik, The measurement of magnetization using Hall probes, J. Phys. E: Sci. Instrum. 1:1193 (1968).CrossRefGoogle Scholar
  24. 24.
    P. J. Flanders, A Hall sensing magnetometer for measuring magnetization, anisotropy, rotational loss and time effects, IEEE Trans. Magn. 21:1584 (1985).CrossRefGoogle Scholar
  25. 25.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Temperature measurements using small quantities of cerium magnesium nitrate, Rev. Sci. Instrum. 35:444 (1964).CrossRefGoogle Scholar
  26. 26.
    R. B. Goldfarb and J. V. Minervini, Calibration of ac susceptometer for cylindrical specimens, Rev. Sci. Instrum. 55:761 (1984).CrossRefGoogle Scholar
  27. 27.
    J. R. Cave, A. Février, H. G. Ky, and Y. Laumond, Calculation of ac losses in ultra fine filamentary NbTi wires, IEEE Trans. Magn. 23:1732 (1987).CrossRefGoogle Scholar
  28. 28.
    A. K. Ghosh, W. B. Sampson, E. Gregory, and T. S. Kreilick, Anomalous low field magnetization in fine filament NbTi conductors, IEEE Trans. Magn. 23:1724 (1987).CrossRefGoogle Scholar
  29. 29.
    E. W. Collings, K. R. Marken Jr., M. D. Sumption, R. B. Goldfarb, and R. J. Loughran, AC loss measurements of two multifilamentary NbTi composite strands, paper AY-05, this conference.Google Scholar
  30. 30.
    D.-X. Chen and R. B. Goldfarb, Kim model for magnetization of type-II superconductors, J. Appl. Phys. 66:2510 (1989).Google Scholar
  31. 31.
    R. B. Goldfarb, A. F. Clark, A. I. Braginski, and A. J. Panson, Evidence for two superconducting components in oxygen-annealed single-phase Y-Ba-Cu-O, Cryogenics 27:475 (1987).CrossRefGoogle Scholar
  32. 32.
    M. Nikolo and R. B. Goldfarb, Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Phys. Rev. B 39:6615 (1989).CrossRefGoogle Scholar
  33. 33.
    M. N. Wilson, Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors, Phys. Rev. B 39, pp. 176–181. (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. B. Goldfarb
    • 1
  • R. L. Spomer
    • 1
  1. 1.Electromagnetic Technology DivisionNational Institute of Standards and TechnologyBoulderUSA

Personalised recommendations