Superconducting and Structural Properties of RF Magnetron Sputtered Niobium Nitride for Josephson Junctions

  • E. J. Cukauskas
  • W. L. Carter
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)

Abstract

The material properties of rf magnetron sputtered niobium nitride prepared at a substrate temperature of 650°C have been investigated as a function of substrate rf bias. These materials exhibit a preferential crystallite orientation related to the amount of rf bias, (200) orientation for low bias and (111) for high bias. We have observed greater than expected lattice parameters of 4.46 Å for these films which we associate with a distorted fcc structure. The best films have a low temperature resistivity less than 70 µΩ-cm and transition temperatures exceeding 16 K. NbN/Si/Nb tunnel junctions have been fabricated from these films with un-oxidized hydrogenated silicon barriers using the SNAP process. These junctions have Vm values exceeding 40 mV and sum gap values ~3.9 mV. These barriers are being used in all NbN tunnel junction development.

Keywords

Methane Quartz Magnesium Argon Nitride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Shoji, M. Aoyagi, S. Kosaka, F. Shinoki and H. Hayakawa, Niobium Nitride Josephson Tunnel Junctions with Magnesium Oxide Barriers, Appl. Phys. Lett, 46, 1098 (1985).CrossRefGoogle Scholar
  2. 2.
    E. J. Cukauskas, M. Nisenoff, H. Kroger, D. W. Jillie and L. R. Smith, All Refractory, High Tc Josephson Device Technology, Adv. Cryogenic Eng. 30, 547 (1984).Google Scholar
  3. 3.
    D. W. Jillie, H. Kroger, L. N. Smith, E. J. Cukauskas and M. Nisenoff, Niobium Nitride-Niobium Josephson Tunnel Junctions with Sputtered Amorphous Silicon Barriers, Appl. Phys. Lett. 40, 747 (1982).CrossRefGoogle Scholar
  4. 4.
    F. Shinoki, A. Shoji, S. Kosaka, S. Takada and H. Hayakawa, Niobium Nitride Josephson Tunnel Junctions with Oxidized Amorphous Silicon Barriers, Appl. Phys. Lett. 38, 285 (1981).CrossRefGoogle Scholar
  5. 5.
    J. C. Villegier, L. Vieux-Rochaz, M. Goniche, P. Renard and M. Vabre, NbN Tunnel Junctions, IEEE Trans. Magn. Mag-21, 498 (1985).CrossRefGoogle Scholar
  6. 6.
    E. J. Cukauskas, The Effects of Methane in the Deposition of Superconducting Niobium Nitride Thin Films at Ambient Substrate Temperature, J. Appl. Phys. 54, 1013 (1983).CrossRefGoogle Scholar
  7. 7.
    E. J. Cukauskas, W. L. Carter and S. B. Qadri, Superconducting and Structure Properties of Niobium Nitride Prepared by rf Magnetron Sputtering, J. Appl. Phys. 57, 2538 (1985).CrossRefGoogle Scholar
  8. 8.
    D. D. Bacon, A. T. English, S. Nakahara, F. G. Peters, H. Schreiber, W. R. Sinclair and R. B. van Dover, Properties of NbN Thin Films Deposited on Ambient Temperature Substrates, J. Appl. Phys. 54, 6509 (1983).CrossRefGoogle Scholar
  9. 9.
    A. Shoji, F. Shinoki, S. Kosaka, M. Aoyagi and H. Hayakawa, New Fabrication Process for Josephson Tunnel Junctions with (Niobium Nitride, Niobium) Double Layered Electrodes, Appl. Phys. Lett. 41, 1097 (1982).CrossRefGoogle Scholar
  10. 10.
    H. Kroger, L. N. Smith and D. W. Jillie, Selective Niobium Anodization Process for Fabricating Josephson Tunnel Junctions, Appl. Phys. Lett. 39, 280 (1981).CrossRefGoogle Scholar
  11. 11.
    H. Kroger, L. N. Smith, D. W. Jillie and J. B. Thaxter, Improved Nb-Si-Nb SNAP Devices, IEEE Trans. Magn. Mag-19, 783 (1983).CrossRefGoogle Scholar
  12. 12.
    M. Gurvitch and J. Kwo, Tunneling and Surface Properties of Oxidized Metal Overlayers of Nb, Adv. Cryogenic Eng. 30, 509 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • E. J. Cukauskas
    • 1
  • W. L. Carter
    • 1
  1. 1.Electronics Technology DivisionNaval Research LaboratoryUSA

Personalised recommendations