A Model for Fatigue Strength Degradation Including Temperature Effect

  • M. Hamdi AbdelMohsen
  • M. K. Abdelsalam
  • R. E. Rowlands
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 32)


A general statistical model that includes the interaction of applied stress, number of fatigue cycles and temperature is developed to analyze the fatigue degradation of composites. It is verified experimentally using fatigue data at room and liquid nitrogen temperatures for three different composites, e.g. cloth glass/epoxy, unidirectional glass/polyester and glass/polyester laminates. This model is useful in calculating the cyclic strength degradation curve at any desired temperature from static strength test results at this temperature and both static and fatigue results at room temperature.


Fatigue Cycle Residual Strength Fatigue Cycling Strength Degradation Ultimate Compressive Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Boom et al., “Wisconsin Superconductive Energy Storage Project,” Annual Reports I (1974), II (1976), III (1977), IV (1981), University of Wisconsin — Madison.Google Scholar
  2. 2.
    M. H. AbdelMohsen, K. Han, and R. E. Rowlands, Fatigue of glass-epoxy composite at 77 K and 300 K: Observation and prediction, in: “Advances in Cryogenic Engineering — Materials,” vol. 30, Plenum, New York (1984), pp. 17–25.Google Scholar
  3. 3.
    S. Han and M. Hamdi AbdelMohsen, “Fatigue Life Scattering of RP/C,” The Society of the Plastic Industry (Feb. 1983).Google Scholar
  4. 4.
    K. Han, Composite fatigue behavior of glass fiber polyester composite composites at 300 K and 77 K, J. Compos. Mater. (1982).Google Scholar
  5. 5.
    E. L. Stone, L. O. El-Marazki, and W. C. Young, Compressive fatigue tests on unidirectional glass/polyester composite at cryogenic temperatures, in: “Nonmetallic Materials and Composites at Low Temperatures,” Plenum (1978), p. 283.Google Scholar
  6. 6.
    H. T. Hahn and R. Y. Kim, Proof testing of composite materials, J. Compos. Mater. 9:297 (1975).CrossRefGoogle Scholar
  7. 7.
    J. N. Yang, R. K. Miller, and C. T. Sun, Statistical fatigue of unnotched graphite/epoxy laminate, J. Compos. Mater. 14:82 (1980).CrossRefGoogle Scholar
  8. 8.
    J. N. Yang, Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates, J. Compos. Mater. 11:176 (1976).CrossRefGoogle Scholar
  9. 9.
    J. N. Yang, Fatigue and residual strength degradation for graphite/epoxy composite under tension-compression cyclic loadings, J. Compos. Mater. 12:19 (1978).CrossRefGoogle Scholar
  10. 10.
    R. Y. Kim and W. J. Park, Proof testing under cyclic tension-tension fatigue, J. Compos. Mater. 14:69 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Hamdi AbdelMohsen
    • 1
  • M. K. Abdelsalam
    • 1
  • R. E. Rowlands
    • 1
  1. 1.Applied Superconductivity CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations