Skip to main content

The Relationship Between the Martensitic Phase Transition and the Superconducting Properties of A15 Compounds

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 30))

Abstract

Since the discovery by Batterman and Barrettl in 1964 of the 21 K structural transition in V3Si, soon followed by the discovery of a similar transition in Nb3Sn,2 there has been intensive investigation, both theoretical and experimental, of its nature, particularly of its relationship to electronic structure and its coupling to lattice distortions and phonons. [This work is summarized in two excellent reviews by Weger and Goldberg3 and by Allen.4] The transition consists of a tetragonal distortion of the originally cubic unit cell (a shear strain distortion) accompanied by a dimerization of the atoms along the transition metal chains (an optic mode distortion); it is usually called the “martensitic” transition, probably because it is diffusionless, although it is more typical of soft-mode transitions4 than it is like “classical” martensitic phase transitions.5 Since both the structural transition and superconductivity in these compounds are thought to be a consequence of strong electron-lattice coupling, it was thought that an understanding of the relatively simpler structural transition might provide insight into the origin of the relatively high-temperature superconducting transition in intermetallic compounds with the A15 structure. Unfortunately a definitive understanding of either the structural or the superconducting transition in these materials still remains elusive.

Work performed under the auspices of the U.S. Department of Energy, Division of Materials Sciences, Office of Basic Energy Sciences under Contract No. De-AC02-76CH00016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13: 390 (1964).

    Article  Google Scholar 

  2. R. B. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. 24A: 315 (1967).

    Article  Google Scholar 

  3. M. Weger and I. B. Goldberg, in: “Solid State Physics,” Vol. 28, F. Seitz and D. Turnbull, eds., Academic Press, New York (1973), p. 1.

    Google Scholar 

  4. P. B. Allen, in: “Dynamical Properties of Solids,” Vol. 3, G. K. Horton and A. A. Maradudin, eds., North-Holland, Amsterdam (1980), p. 95.

    Google Scholar 

  5. M. Cohen, G. B. Olson, and P. C. Clapp, in: Proceedings of the International Conference on Martensitic Transformations ICOMAT, 1979, Department of Materials Science and Engr., M.I.T., Cambridge, MA (1979), p. 1.

    Google Scholar 

  6. G. Bilbro and W. L. McMillan, Phys. Rev. B 14: 1887 (1976).

    Article  Google Scholar 

  7. S. K. Ghatak, B. C. Khanra, and D. K. Ray, Solid State Commun. 27: 767 (1978).

    Article  Google Scholar 

  8. D. O. Welch, in: “Advances in Cryogenic Engineering-Materials,” Vol. 26, Plenum Press, New York (1980), p. 48.

    Chapter  Google Scholar 

  9. R. Roberge, H. LeHuy, and S. Foner, Physica B 108: 1245 (1981).

    Article  Google Scholar 

  10. S. Foner and E. J. McNiff, Phys. Lett. A 58: 318 (1976).

    Article  Google Scholar 

  11. J. Labbé and J. Friedel, J. Phys. Radium 27: 303 (1966).

    Article  Google Scholar 

  12. L. P. Gor’kov, Sov. Phys. JETP 38: 830 (1974).

    Google Scholar 

  13. L. P. Gor’kov and O. N. Dorokov, J. Low Temp. Phys. 22: 1 (1976).

    Article  Google Scholar 

  14. T.-K. Lee, J. L. Birman, and S. J. Williamson, Phys. Rev. B 20: 2547 (1979).

    Article  Google Scholar 

  15. W. L. McMillan, Phys. Rev. 167: 331 (1968).

    Article  Google Scholar 

  16. G. Shirane and J. D. Axe, Phys. Rev. B 4: 2957 (1971).

    Article  Google Scholar 

  17. C. W. Chu and V. Diatschenko, Phys. Rev. Lett. 41: 572 (1978).

    Article  Google Scholar 

  18. C. W. Chu, Phys. Rev. Lett. 33: 1283 (1974).

    Article  Google Scholar 

  19. H. Kumakura, C. L. Snead, Jr., and M. Suenaga, unpublished (1983).

    Google Scholar 

  20. J. F. Bussiére, B. Faucher, C. L. Snead, Jr., and M. Suenaga, in: “Advances in Cryogenic Engineering-Materials,” Vol. 28, Plenum Press, New York (1982), p. 453.

    Chapter  Google Scholar 

  21. H. LeHuy, J. F. Bussiére, and B. S. Berry, IEEE Trans. Mag. netics MAG., 19: 893 (1983).

    Article  Google Scholar 

  22. L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A: 43 (1971).

    Article  Google Scholar 

  23. M. Suenaga, K. Aihara, and D. 0. Welch, Bull. Am. Phys. Soc. 25:385 (1980), and unpublished.

    Google Scholar 

  24. M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, in: “Advances in Cryogenic Engineering-Materials,” Vol. 28, Plenum Press, New York (1980), p. 379.

    Google Scholar 

  25. J. Ekin, unpublished (1983).682 D. O. Welch

    Google Scholar 

  26. L. J. Vieland, J. Phys. Chem. Solids 31: 1449 (1970).

    Article  Google Scholar 

  27. Y. Fujii, J. B. Hastings, M. Kaplan, G. Shirane, Y. Inada, and N. Kitamura, Phys. Rev. B 25: 364 (1982).

    Article  Google Scholar 

  28. A. F. Khoder and J. Labbe, Solid State Commun. 46: 91 (1983).

    Article  Google Scholar 

  29. H. Devantay, J. L. Jorda, M. DeCroux, J. Muller, and R. Flükiger, J. Mats. Sci. 16: 2145 (1981).

    Article  Google Scholar 

  30. C. L. Snead, Jr., H. Kumakura, and M. Suenaga, Appl. Phys. Lett. 43: 311 (1983).

    Article  Google Scholar 

  31. C. L. Snead, Jr. and M. Suenaga, Appl. Phys. Lett. 37: 659 (1980).

    Article  Google Scholar 

  32. H. W. King, in: “The Mechanism of Phase Transformations in Crystalline Solids,” Monograph No. 33, Institute of Metals, London (1968), p. 196.

    Google Scholar 

  33. Y. Inada, Ph.D. Thesis, Aoyama Gakuin Univ., Tokyo (1980).

    Google Scholar 

  34. T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. 19: 4545 (1979).

    Article  Google Scholar 

  35. C. L. Snead, Jr. and M. Suenaga, unpublished (1983).

    Google Scholar 

  36. T. P. Orlando, J. A. Alexander, S. J. Bending, J. Kwo, S. J. Poon, R. H. Hammond, M. R. Beasley, E. J. McNiff, Jr., and S. Foner, IEEE Trans. Magnetics MAG., 17: 368 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Welch, D.O. (1984). The Relationship Between the Martensitic Phase Transition and the Superconducting Properties of A15 Compounds. In: Clark, A.F., Reed, R.P. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9868-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9868-4_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9870-7

  • Online ISBN: 978-1-4613-9868-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics