Advertisement

The Relationship Between the Martensitic Phase Transition and the Superconducting Properties of A15 Compounds

  • D. O. Welch
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)

Abstract

Since the discovery by Batterman and Barrettl in 1964 of the 21 K structural transition in V3Si, soon followed by the discovery of a similar transition in Nb3Sn,2 there has been intensive investigation, both theoretical and experimental, of its nature, particularly of its relationship to electronic structure and its coupling to lattice distortions and phonons. [This work is summarized in two excellent reviews by Weger and Goldberg3 and by Allen.4] The transition consists of a tetragonal distortion of the originally cubic unit cell (a shear strain distortion) accompanied by a dimerization of the atoms along the transition metal chains (an optic mode distortion); it is usually called the “martensitic” transition, probably because it is diffusionless, although it is more typical of soft-mode transitions4 than it is like “classical” martensitic phase transitions.5 Since both the structural transition and superconductivity in these compounds are thought to be a consequence of strong electron-lattice coupling, it was thought that an understanding of the relatively simpler structural transition might provide insight into the origin of the relatively high-temperature superconducting transition in intermetallic compounds with the A15 structure. Unfortunately a definitive understanding of either the structural or the superconducting transition in these materials still remains elusive.

Keywords

Alloy Content Solute Addition Strain Dependence Martensitic Transition Phonon Softening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13: 390 (1964).CrossRefGoogle Scholar
  2. 2.
    R. B. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. 24A: 315 (1967).CrossRefGoogle Scholar
  3. 3.
    M. Weger and I. B. Goldberg, in: “Solid State Physics,” Vol. 28, F. Seitz and D. Turnbull, eds., Academic Press, New York (1973), p. 1.Google Scholar
  4. 4.
    P. B. Allen, in: “Dynamical Properties of Solids,” Vol. 3, G. K. Horton and A. A. Maradudin, eds., North-Holland, Amsterdam (1980), p. 95.Google Scholar
  5. 5.
    M. Cohen, G. B. Olson, and P. C. Clapp, in: Proceedings of the International Conference on Martensitic Transformations ICOMAT, 1979, Department of Materials Science and Engr., M.I.T., Cambridge, MA (1979), p. 1.Google Scholar
  6. 6.
    G. Bilbro and W. L. McMillan, Phys. Rev. B 14: 1887 (1976).CrossRefGoogle Scholar
  7. 7.
    S. K. Ghatak, B. C. Khanra, and D. K. Ray, Solid State Commun. 27: 767 (1978).CrossRefGoogle Scholar
  8. 8.
    D. O. Welch, in: “Advances in Cryogenic Engineering-Materials,” Vol. 26, Plenum Press, New York (1980), p. 48.CrossRefGoogle Scholar
  9. 9.
    R. Roberge, H. LeHuy, and S. Foner, Physica B 108: 1245 (1981).CrossRefGoogle Scholar
  10. 10.
    S. Foner and E. J. McNiff, Phys. Lett. A 58: 318 (1976).CrossRefGoogle Scholar
  11. 11.
    J. Labbé and J. Friedel, J. Phys. Radium 27: 303 (1966).CrossRefGoogle Scholar
  12. 12.
    L. P. Gor’kov, Sov. Phys. JETP 38: 830 (1974).Google Scholar
  13. 13.
    L. P. Gor’kov and O. N. Dorokov, J. Low Temp. Phys. 22: 1 (1976).CrossRefGoogle Scholar
  14. 14.
    T.-K. Lee, J. L. Birman, and S. J. Williamson, Phys. Rev. B 20: 2547 (1979).CrossRefGoogle Scholar
  15. 15.
    W. L. McMillan, Phys. Rev. 167: 331 (1968).CrossRefGoogle Scholar
  16. 16.
    G. Shirane and J. D. Axe, Phys. Rev. B 4: 2957 (1971).CrossRefGoogle Scholar
  17. 17.
    C. W. Chu and V. Diatschenko, Phys. Rev. Lett. 41: 572 (1978).CrossRefGoogle Scholar
  18. 18.
    C. W. Chu, Phys. Rev. Lett. 33: 1283 (1974).CrossRefGoogle Scholar
  19. 19.
    H. Kumakura, C. L. Snead, Jr., and M. Suenaga, unpublished (1983).Google Scholar
  20. 20.
    J. F. Bussiére, B. Faucher, C. L. Snead, Jr., and M. Suenaga, in: “Advances in Cryogenic Engineering-Materials,” Vol. 28, Plenum Press, New York (1982), p. 453.CrossRefGoogle Scholar
  21. 21.
    H. LeHuy, J. F. Bussiére, and B. S. Berry, IEEE Trans. Mag. netics MAG., 19: 893 (1983).CrossRefGoogle Scholar
  22. 22.
    L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A: 43 (1971).CrossRefGoogle Scholar
  23. 23.
    M. Suenaga, K. Aihara, and D. 0. Welch, Bull. Am. Phys. Soc. 25:385 (1980), and unpublished.Google Scholar
  24. 24.
    M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, in: “Advances in Cryogenic Engineering-Materials,” Vol. 28, Plenum Press, New York (1980), p. 379.Google Scholar
  25. 25.
    J. Ekin, unpublished (1983).682 D. O. WelchGoogle Scholar
  26. 26.
    L. J. Vieland, J. Phys. Chem. Solids 31: 1449 (1970).CrossRefGoogle Scholar
  27. 27.
    Y. Fujii, J. B. Hastings, M. Kaplan, G. Shirane, Y. Inada, and N. Kitamura, Phys. Rev. B 25: 364 (1982).CrossRefGoogle Scholar
  28. 28.
    A. F. Khoder and J. Labbe, Solid State Commun. 46: 91 (1983).CrossRefGoogle Scholar
  29. 29.
    H. Devantay, J. L. Jorda, M. DeCroux, J. Muller, and R. Flükiger, J. Mats. Sci. 16: 2145 (1981).CrossRefGoogle Scholar
  30. 30.
    C. L. Snead, Jr., H. Kumakura, and M. Suenaga, Appl. Phys. Lett. 43: 311 (1983).CrossRefGoogle Scholar
  31. 31.
    C. L. Snead, Jr. and M. Suenaga, Appl. Phys. Lett. 37: 659 (1980).CrossRefGoogle Scholar
  32. 32.
    H. W. King, in: “The Mechanism of Phase Transformations in Crystalline Solids,” Monograph No. 33, Institute of Metals, London (1968), p. 196.Google Scholar
  33. 33.
    Y. Inada, Ph.D. Thesis, Aoyama Gakuin Univ., Tokyo (1980).Google Scholar
  34. 34.
    T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. 19: 4545 (1979).CrossRefGoogle Scholar
  35. 35.
    C. L. Snead, Jr. and M. Suenaga, unpublished (1983).Google Scholar
  36. 36.
    T. P. Orlando, J. A. Alexander, S. J. Bending, J. Kwo, S. J. Poon, R. H. Hammond, M. R. Beasley, E. J. McNiff, Jr., and S. Foner, IEEE Trans. Magnetics MAG., 17: 368 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. O. Welch
    • 1
  1. 1.Division of Metallurgy and Materials ScienceBrookhaven National LaboratoryUptonUSA

Personalised recommendations