Oxidation Mechanism of the Surface of A15 Superconductors

  • H. Ihara
  • Y. Kimura
  • H. Okumura
  • K. Senzaki
  • S. Gonda
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)


The oxidation process of the surface of the superconductors is usually employed in the fabrication of the Josephson tunnel junctions1–6. In the case of A15 superconductors such as Nb3Ge, Nb3Sn, Nb3A1, Nb3Si and V3Si, the native oxide is not always a good tunnel barrier. One case (Nb3Sn and Nb3A1) it is good, in other case (Nb3Ge and V3Si) it is not.1–5 In order to clarify the reason, the oxidation process of the surface of the A15 superconductors was studied by the in-situ observation of x-ray photoelectron spectroscopy (XPS). The XPS technique can reveal nondestructively the composition, thickness,quality of the oxide layer. This is one of the most promising techniques for investigating the structure of the native oxide-layer and tunnel barrier within a thickness of about 5 nm.


Oxide Layer Oxidation Mechanism Oxidation Time Tunnel Barrier Niobium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. F. Moore, J. M. Rowell, and M. R. Beasley, Solid State Comm. 20: 305 (1976).CrossRefGoogle Scholar
  2. 2.
    J. M. Rowell and P. H. Schmit, Appl. Phys. Lett. 29: 622 (1976).CrossRefGoogle Scholar
  3. 3.
    H. Ihara, Y. Kimura, H. Okumura and S. Gonda, IEEE Trans. Magn. MAG 19: 938 (1983).CrossRefGoogle Scholar
  4. 4.
    D. F. Moore, R. B. Zubeck, and J. M. Rowell, Phys. Rev. B 20: 2721 (1979).CrossRefGoogle Scholar
  5. 5.
    Y. Tarutani, K. Yamada, and U. Kawabe, IEEE Trans. Magn. MAG 17: 326 (1981).CrossRefGoogle Scholar
  6. 6.
    J.Kwo and T. H. Geballe, Phys. Rev. B 23: 3230 (1981).CrossRefGoogle Scholar
  7. 7.
    H. Ihara, Y. Kimura, M. Yamazaki, and S. Gonda, in “Proc. 7th Intern. Vacuum Metallurgy” Special Meltings and Metallurgical Coutings (1982, Tokoyo, The Iron and Steel Institute of Japan) p. 65.Google Scholar
  8. 8.
    H. Ihara, Y. Kimura, M. Yamazaki, and S. Gonda, Phys. Rev. B 27: 551 (1983).CrossRefGoogle Scholar
  9. 9.
    J. N. Miller, I. Lindau, and W. E. Spicer, Phys. Lett. 88A: 97 (1982).CrossRefGoogle Scholar
  10. 10.
    B. W. Roberts, J. Phys. Chem. Ref. Data 5: 531 (1976).CrossRefGoogle Scholar
  11. 11.
    R. Holm and S. Storp, Apple. Phys. 9: 217 (1976).CrossRefGoogle Scholar
  12. 12.
    D. R. Penn, J.Electron Spectrosc. & Relat. Phenom 9: 29 (1976).CrossRefGoogle Scholar
  13. 13.
    N. Cabrera and N. F. Mott, Rep.Prog. Phys. 12: 163 (1949).CrossRefGoogle Scholar
  14. 14.
    D. E. Gray, “American Institute of Physics Handbook” (McGraw-Hill Book Comp. 1972) 3rd Edition 7–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • H. Ihara
    • 1
  • Y. Kimura
    • 1
  • H. Okumura
    • 1
  • K. Senzaki
    • 1
  • S. Gonda
    • 1
  1. 1.Electrotechnical LaboratorySakura-mura, Niihari-gun, IbarakiJapan

Personalised recommendations