Degradation of Copper Stabilizer in a Superconducting Wire Induced by Cyclic Stressing at Cryogenic Temperature

  • K. Katagiri
  • K. Koyanagi
  • M. Fukumoto
  • T. Nishiura
  • T. Okada
  • M. Nagata
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)

Abstract

For the long-term operation of high field pulsed superconducting magnet, increase in electrical resistivity of stabilizer in the superconducting wire is one of the significant damages resulted from repeated stress induced by its electro-magnetic force. Although efforts have been made to assess the degradation of this kind,1–3 some problems associated with experimental data covering the region of great many number of stress cycles still remain to be clarified. Resistivity change in copper during fatigue is somewhat complicated because of presence of many influencing factors such as stress/strain amplitude, purity of the test material and testing temperature.

Keywords

Fatigue Recombination Helium Resis Perforation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Ekin, Fatigue and stress effects in NbTi and Nb3Sn multi-filamentary superconductors, in: “Advances in Cryogenic Engineering”, Vol. 24, K. D. Timmerhaus, R. P. Reed and A. F. Clark, eds., Plenum Press, New York (1978) P. 306.CrossRefGoogle Scholar
  2. 2.
    E. S. Fischer, S. H. Kim and R. J. Linz, Effect of cyclic strain on electrical resistivity of copper at 4.2 K, in: “Advances in Cryogenic Engineering”, Vol. 22, K. D. Timmerhaus, R. P. Reed and A. F. Clark, eds., Plenum Press, New York (1977) P. 477.CrossRefGoogle Scholar
  3. 3.
    E. W. Johnson and H. H. Johnson, Imperfection density of fatigued and annealed copper via electrical resistivity measurements, Trans. Met. Soc. AIME, 233: 1333 (1965).Google Scholar
  4. 4.
    K. Katagiri, S. Nishijima, T. Nishiura, T. Okada, H. Takes, M. Yokota, Y. Murakami and Y. Inuishi, Mechanical properties of superconducting wire for 0.5 MJ pulsed magnet at cryogenic temperatures, in: “Proc. Int. Cryog. Mats. Conf., Kobe”, K. Tachikawa and A. Clark, eds., Butterworths, Surrey (1982) P. 191.Google Scholar
  5. 5.
    H. Takei, M. Nagata, M. Kawashima, Y. Murakami, T. Okada, Y. Inuishi, T. Onishi and H. Tateishi, Metalurgical and electromagnetic properties of superconducting cable for Osaka Univ.’s 0.5 MJ pulsed magnet, in: “Proc. Int. Cryog. Mats. Conf., Kobe”, K. Tachikawa and A. Clark, eds., Butterworths, Surrey (1982) P. 485.Google Scholar
  6. 6.
    G. M. McCracken and S. Blow, The shielding of superconducting magnets in a fusion reactor, UKAEA Report CLM-R 120 (1972).Google Scholar
  7. 7.
    A. Varshaysky and G. Joseph, Bulk fatigue effects in copper single crystals of [211] orientation as influenced by temperature, J. Inst. Metals, 96: 319 (1968).Google Scholar
  8. 8.
    C. E. Feltner and C. Laird, Cyclic stress-strain responce of f.c.c. metals and alloys - II Dislocation structures and mechanisms, Acta Met., 15: 1633 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • K. Katagiri
    • 1
  • K. Koyanagi
    • 1
  • M. Fukumoto
    • 1
  • T. Nishiura
    • 1
  • T. Okada
    • 1
  • M. Nagata
    • 2
  1. 1.Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan
  2. 2.Sumitomo Electric Industries Ltd.OsakaJapan

Personalised recommendations