Skip to main content

Low Temperature Mechanical Properties of CeO2-Alloyed Tetragonal Zirconia

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 30))

  • 36 Accesses

Abstract

In zirconia systems, the tetragonal to monoclinic phase transformation which occurs at ~1000–1200°C is martensitic1,2 and stressinduced.3,4,5 As a result, when the elevated temperature phase is retained metastably at room temperature6 and the transformation is stress-induced,3–5,7 significant gains occur in strength and fracture toughness. The improved strength and toughness in most of these ZrO2 systems have been attributed to the tetragonal to monoclinic phase (t → m) transformation in the vicinity of the propagating cracks.7–16 The stress intensity is reduced upon phase transformation at the crack tip stress field, thereby requiring additional stress for crack extension. Also the transformation was greater, the nearer the transformation temperature Ms to the ambient temperature

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. C. Subbarao, H. S. Maiti and K. K. Srivastave, Martensitic transformation in zirconia, Phys. Stat. Sol., A21: 9 (1974).

    Article  Google Scholar 

  2. G. K. Bansal and A. H. Heuer, Martensitic phase transformation in zirconia (ZrO2):I, Acta Metall., 20:1281; (1974).

    Article  Google Scholar 

  3. G. K. Bansal and A. H. Heuer, Martensitic phase transformation in zirconia (ZrO2): II, ibid. 22: 409 (1974).

    Google Scholar 

  4. T. K. Gupta, F. F. Lange, and J. H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, J. Mater. Sci., 13:1464 (1978);

    Article  Google Scholar 

  5. T. K. Gupta, Role of stress-induced phase transformation in enhancing strength and toughness of zirconia ceramics, in: Fracture Mechanics of Ceramics, vol. 4, R. C. Bradt, D. P. H. Hasselman and F. F. Lange, ed. Plenum Pub. Corp., New York (1978).

    Google Scholar 

  6. R. C. Garvie, R. H. J. Hannink, and R. T. Pascoe, Ceramic steel, Nature (London), 258: 703 (1975).

    Article  Google Scholar 

  7. N. Claussen, Stress-induced transformation of tetragonal ZrO2 particles in ceramics matrices, J. Am. Ceram. Soc. 61: 85 (1978).

    Article  Google Scholar 

  8. T. K. Gupta, Sintering of tetragonal zirconia and its characteristics, Sci. Sintering, 10:205 (1978);

    Google Scholar 

  9. T. K. Gupta, J. H. Bechtold, R. C. Kuznicki, L. H. Cadoff, and B. R. Rossing, Stabilization of tetragonal phase in polycrystalline zirconia, J. Mater. Sci., 12: 2421 (1977).

    Article  Google Scholar 

  10. C. A. Andersson and T. K. Gupta, Phase stability and transformation toughening in zirconia, in: Advances in Ceramics 3, Science and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  11. F. F. Lange and D. J. Green, Effect of inclusion size on the retention of tetragonal Zr02: Theory and Experiments, in: Advances in Ceramics 3, Science and Technology of Zirconia; A. H. Heuer and L. W. Hobbs, ed., The American Ceramics Society, Columbus, Ohio (1981).

    Google Scholar 

  12. A. H. Heuer, Alloy design in partially stabilized zirconia, in: Advances in Ceramics 3, Science and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., The American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  13. N. Claussen and M. Ruhle, Design of transformation-toughened ceramics, in: Advances in Ceramics 3, Science and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., The American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  14. R. H. J. Hannink, K. A. Johnston, R. T. Pascoe, and R. C. Garvie, Microstructural changes during isothermal aging of a calcia partially stabilized zirconia alloy, in: Advances in Ceramics 3, Science and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., The American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  15. A. G. Evans, D. B. Marshall, and N. H. Burlingame, Transformation toughening in ceramics, in: Advances in Ceramics 3, Science and Technology of Zirconia, A. H. Heuer and L. W. Hobbs, ed., The American Ceramic Society, Columbus, Ohio, 1981.

    Google Scholar 

  16. D. L. Porter, A. G. Evans, and A. H. Heuer, Transformation toughening in partially stabilized zirconia (PSZ), Acta Metall., 27: 1649 (1979).

    Article  Google Scholar 

  17. A. G. Evans and A. H. Heuer, Review-transformation toughening in ceramics: Martensitic transformations in crack-tip stress fields, J. Am. Ceram. Soc., 63: 241 (1980).

    Article  Google Scholar 

  18. A. G. Evans, N. Burlingame, M. Drory, and W. M. Kriven, Martensitic transformation in zirconia - particle size effects and toughening, Acta Metall., 29: 447 (1981).

    Article  Google Scholar 

  19. R. M. McMeeking and A. G. Evans, Mechanics of transformation-toughening in brittle materials, J. Am. Ceram. Soc., 65: 242 (1982).

    Article  Google Scholar 

  20. A. H. Heuer, N. Claussen, W. M. Kriven and M. Ruhle, Stability of tetragonal Zr02 particles in ceramic matrices, J. Am. Ceram. Soc., 65: 642 (1982).

    Article  Google Scholar 

  21. D. L. Porter and A. H. Heuer, Mechanisms of toughening partially stabilized zirconia (PSZ), J. Am. Ceram. Soc., 60: 183 (1977).

    Article  Google Scholar 

  22. V. Vango and S. Roitti, “Equilibrium Phase Diagram of Zr02-Ce02 System,” Ceramurgia, 1: 4 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, T.K., Andersson, C.A. (1984). Low Temperature Mechanical Properties of CeO2-Alloyed Tetragonal Zirconia. In: Clark, A.F., Reed, R.P. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9868-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9868-4_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9870-7

  • Online ISBN: 978-1-4613-9868-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics