Advertisement

Nondestructive Evaluation of Thick Austenitic Stainless Steel Weldments by Shear Horizontal Acoustic Waves

  • R. E. Schramm
  • J. C. Moulder
  • C. M. Fortunko
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 30)

Abstract

Recent papers1,2 reviewed the difficulties involved in ultrasonic testing of stainless steel weldments and the advantages of using horizontally polarized shear waves. The basic problem lies in the large grain size and anisotropic elastic properties of these welds. The grains grow epitaxially from pass to pass with the [100] direction parallel to the thermal gradient. This results in a highly textured, columnar structure (dendritic) that causes considerable mode conversion of the usual longitudinal waves, making ray tracing very difficult. Shear horizontal (SH) waves are polarized in the plane of the weldment, in the direction of the weld pass and normal to the growth direction of the columnar grains. Along certain directions they can propagate through the weld as pure shear waves and suffer little reflection or conversion by polarization coupling to the longitudinal (L) or shear vertical (SV) modes.2 SH waves can be efficiently generated and detected with noncontacting electromagnetic acoustic transducers (EMATs).3

Keywords

Inspection System Stainless Steel Weldment Girth Weld Shear Horizontal Wave Polarize Shear Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Kupperman and K. J. Reimann, IEEE Trans. Sonics Ultrason. 27:7 (1980).CrossRefGoogle Scholar
  2. 2.
    C. M. Fortunko and J. C. Moulder, Ultrasonics 20: 113 (1982).CrossRefGoogle Scholar
  3. 3.
    C. M. Fortunko and R. E. Schramm, Weld. J. 61:39 (1982).Google Scholar
  4. 4.
    R. B. Thompson, IEEE Trans. Sonics Ultrason. 20:340 (1973).CrossRefGoogle Scholar
  5. 5.
    E. B. Miller and F. L. Thurstone, J. Acoust. Soc. Am. 61:1481Google Scholar
  6. 6.
    G. S. Kino, D. Corl, S. Bennett, and K. Peterson, in: “Proceedings of the IEEE Ultrasonics Symposium,” B. R. McAvoy, ed., IEEE, New York (1980), p. 722.Google Scholar
  7. 7.
    C. VandenBroek, M. B. Elzinga, J. R. Frederick, and S. Ganapathy, in: “Ultrasonic Materials Characterization,” NBS Special Publication 596, H. Berger and M. Linzer, eds., National Bureau of Standards, Washington, D.C. (1980), p. 249.Google Scholar
  8. 8.
    R. K. Elsley and C. M. Fortunko, in: “Proceedings of the IEEE Ultrasonics Symposium,” B. R. McAvoy, ed., IEEE, New York (1980), p. 892.Google Scholar
  9. 9.
    G. D. Bergland, IEEE Spectrum 6: 41 (July 1969).CrossRefGoogle Scholar
  10. 10.
    C. M. Fortunko and R. E. Schramm, J. NDE 3: 155 (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • R. E. Schramm
    • 1
  • J. C. Moulder
    • 1
  • C. M. Fortunko
    • 1
  1. 1.Fracture and Deformation DivisionNational Bureau of StandardsBoulderUSA

Personalised recommendations