Advertisement

Cryogenic Fracture Toughness and Fatigue Crack-Growth Rate Properties of Inconel 706 Base Material and GAS Tungsten-ARC Weldments

  • W. A. Logsdon
  • J. M. Wells
  • R. Kossowsky

Abstract

The fail-safe performance of advanced cryogenic structures, such as superconducting motors, generators, and magnets, can depend greatly on the ability of structural materials to sustain high stress and strain in the presence of flaws. Materials that have been widely used in these structural applications are stainless steels and structurally stable, austenitic nickel-base superalloys, including Inconel 718 [1,2]. A considerable amount of fracture toughness and fatigue crack-growth rate (FCGR) data have been developed on both Inconel 718 base material and weldments at cryogenic temperatures [3–11]. Fracture mechanics principles can be used to evaluate the initial allowable flaw sizes and cyclic life of critical structures from these data.

Keywords

Fracture Toughness Base Material Filler Metal Cryogenic Temperature Resistance Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Blaugher, T. J. Fagan, J. H. Parker, Jr., J. M. Wells, and J. L. McCabria, in Proceedings, International Cryogenic Engineering Conference, IPC Science and Technology Press, Guildford, Surrey, England (1974), p. 143.Google Scholar
  2. 2.
    J. H. Parker, Jr., R. D. Blaugher, A. Patterson, P. D. Vecchio, and J. L. McCabria, IEEE Trans. Magn. MAG-11(2):640 (1975).CrossRefGoogle Scholar
  3. 3.
    W. A. Logsdon, R. Kossowsky, and J. M. Wells, in Advances in Cryogenic Engineering, Vol. 24, Plenum Press, New York (1978), p. 197.Google Scholar
  4. 4.
    J. M. Wells, W. A. Logsdon, R. Kossowsky, and M. R. Daniel, in “Materials Research for Superconducting Machinery IV,” NBS/ARPA Semi-Annual Technical Report, ADAO19230 (1975), p. 1.Google Scholar
  5. 5.
    J. M. Wells, W. A. Logsdon, R. Kossowsky, and M. R. Daniel, in “Materials Research for Superconducting Machinery V,” NBS/ARPA Semi-Annual Technical Report, ADA030170 (1976), p. 1.Google Scholar
  6. 6.
    J. M. Wells, W. A. Logsdon, R. Kossowsky, and M. R. Daniel, in “Materials Research for Superconducting Machinery VI,” NBS/ARPA Semi-Annual Technical Report, ADA036919 (1976), p. 1.Google Scholar
  7. 7.
    R. L. Tobler, Cryogenics 16(11):669 (1976).CrossRefGoogle Scholar
  8. 8.
    R. L. Tobler and R. P. Reed, in Advances in Cryogenic Engineering, Vol. 24, Plenum Press, New York (1978), p. 82.Google Scholar
  9. 9.
    D. E. Pettit, C. E. Feddersen, and H. Mindlin, “Flaw Growth Behavior of Inconel 718 at Room and Cryogenic Temperature,” NASA Report CR-101942, Battelle-Columbus Laboratories, Columbus, Ohio (1969).Google Scholar
  10. 10.
    P. Shahinian, H. E. Watson, and H. H. Smith, J. Mater. JMLSA 7(4):527 (1972).Google Scholar
  11. 11.
    R. G. Forman, “Crack Growth Behavior in Thick Welded Plates of Inconel 718 at Room and Cryogenic Temperatures,” NASA TN D-7665, Washington, D.C. (May 1974).Google Scholar
  12. 12.
    J. M. Wells, W. A. Logsdon, R. Kossowsky, and M. R. Daniel, in “Materials Research for Superconducting Machinery HI,” NBS/ARPA Semi-Annual Technical Report, ADAO 12365 (1975), p. 1.Google Scholar
  13. 13.
    J. A. Begley and J. D. Landes, in Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia (1972), p. 1.CrossRefGoogle Scholar
  14. 14.
    J. D. Landes and J. A. Begley, in Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia (1972), p. 24.CrossRefGoogle Scholar
  15. 15.
    J. D. Landes and J. A. Begley, in Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, Philadelphia (1974), p. 170.Google Scholar
  16. 16.
    G. A. Clarke, W. R. Andrews, J. A. Begley, J. K. Donald, G. T. Embley, J. D. Landes, D. E. McCabe, and J. H. Underwood, J. Test, and Eval. 7(1):49 (1979).CrossRefGoogle Scholar
  17. 17.
    P. C. Paris, H. Tada, A. Zahoor, and H. Ernst, in Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, Philadelphia (1979), p. 5.CrossRefGoogle Scholar
  18. 18.
    P. C. Paris, in Proceedings Tenth Sagamore Army Materials Research Conference, Syracuse University Press, Syracuse, New York (1964), p. 107.Google Scholar
  19. 19.
    W. A. Logsdon, in Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1977), p. 47.Google Scholar
  20. 20.
    W. A. Logsdon, J. M. Wells, and R. Kossowsky, Proceedings Second International Conference on Mechanical Behavior of Materials, American Society for Metals, Metals Park, Ohio (1977), p. 1283.Google Scholar
  21. 21.
    The Superalloys (C. T. Sims and W. C. Hagel, eds.), John Wiley and Sons, New York (1972).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • W. A. Logsdon
    • 1
  • J. M. Wells
    • 1
  • R. Kossowsky
    • 1
  1. 1.Westinghouse R & D CenterPittsburghUSA

Personalised recommendations