Skip to main content

The Effect of Temperature on Impurity Adsorption from Hydrogen on Activated Carbon and Silica Gel

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35 A))

  • 510 Accesses

Abstract

In the production of liquid hydrogen, trace impurities (nitrogen and methane) must be removed to very low levels (1 ppm) prior to liquefaction to avoid plugging of the heat exchangers. This is generally done by adsorption on activated carbon or silica gel at cryogenic temperatures (−280 to −320°F). The working pressure, which depends on the location in the process where the adsorbers are placed, is generally in the range of 200 to 1000 psia. Two adsorption beds are used with one being regenerated with purified hydrogen, while the other is in the adsorption phase. Regeneration temperatures are on the order of 250 to 300°F at approximately the same pressure as the adsorption pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. J. Hiza, Chem. Eng. Progr. 56(10):68 (1960).

    Google Scholar 

  2. M. J. Hiza and A. J. Kidnay, in Advances in Cryogenic Engineerings, Vol. 6, Plenum Press, Inc., New York (1961), p. 457.

    Google Scholar 

  3. M. J. Hiza and A. J. Kidnay, in Advances in Cryogenic Engineering, Vol. 8, Plenum Press, Inc., New York (1963), p. 174.

    Google Scholar 

  4. A. J. Kidnay and M. J. Hiza, Aiche J. 12(1):58 (1966).

    Article  Google Scholar 

  5. A. J. Kidnay, M. J. Hiza, and P. F. Dickson, in Advances in Cryogenic Engineering, Vol. 13, Plenum Press, Inc., New York (1968), p. 397.

    Google Scholar 

  6. L. C. Eagleton and H. Bliss, Chem. Eng. Progr. 49:543 (1953).

    Google Scholar 

  7. A. J. Kidnay and A. L. Meyers, Aiche J. 12:981 (1966).

    Article  Google Scholar 

  8. W. H. Cook, Ph.D. Dissertation, University of Ottawa, Ottawa, Canada (1965).

    Google Scholar 

  9. D. M. Young and A. D. Crowell, Physical Adsorption of Gases, Butterworths, London (1962).

    Google Scholar 

  10. M. M. Dubinin and E. D. Zaverina, Acta Physicochim U.R.S.S. 4:67 (1936).

    Google Scholar 

  11. M. M. Dubinin, Chem. Rev. 60:235 (1960).

    Article  Google Scholar 

  12. W. K. Lewis, E. R. Gilliand, B. Chertow, and W. P. Cadogan, Ind. Eng. Chem. 42:1326 (1950).

    Article  Google Scholar 

  13. J. W. Haaz and C. A. Barrere, Jr., Chem. Eng. Progr. Symp. Ser. 65(96):48 (1969).

    Google Scholar 

  14. A. J. Kidnay and M. J. Hiza, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, Inc., New York (1967), p. 730.

    Google Scholar 

  15. F. D. Maslan, M. Altman, and E. R. Aberth, J. Phys. Chem. 57:106 (1953).

    Article  Google Scholar 

  16. W. H. Cook and D. Basmadjian, Can. J. Chem. Eng. 42:146 (1964).

    Article  Google Scholar 

  17. Pittsburgh Carbon Company, Division of Calgon.

    Google Scholar 

  18. I. Zwiebel, R. L. Gariepy, and J. J. Schnitzer, Aiche J. 18(6): 1139 (1972).

    Article  Google Scholar 

  19. I. Zwiebel, C. M. Kralik, and J. J. Schnitzer, Aiche J. 20(5):915 (1974).

    Article  Google Scholar 

  20. J. W. Carter, Aiche J. Vol. 21(2):380 (1975).

    Article  Google Scholar 

  21. D. Basmadjian and K. D. Ha, Ind. Eng. Chem., Proc. Des. & Dev. 14(3):328 (1975).

    Article  Google Scholar 

  22. D. M. Ruthven, Aiche J. 24(3):540 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kratz, W.C. (1980). The Effect of Temperature on Impurity Adsorption from Hydrogen on Activated Carbon and Silica Gel. In: Timmerhaus, K.D., Snyder, H.A. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9856-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9856-1_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9858-5

  • Online ISBN: 978-1-4613-9856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics