Engineering Aspects of Cryogenic Laser-Fusion Targets

  • D. L. Musinski
  • T. M. Henderson
  • R. J. Simms
  • T. R. Pattinson
  • R. B. Jacobs
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 35 A)


For efficient burn of the deuterium-tritium fuel contained within a hollow, spherical laser fusion target the fuel core must first be driven to a high density and then subsequently be elevated in temperature to initiate the reaction. To achieve high final fuel densities the internal pressure within the target must be overcome during the implosion. A cryogenic target, one in which the fuel is condensed as a liquid or solid layer on the inner surface of the spherical shell, may overcome the mechanisms [1] which can limit the final density. Fuel initially confined to the wall of the target cannot respond quickly enough upon absorption of energy to fill the interior volume of the target before the target implodes. At a given level of laser power, a cryogenic liquid or solid layer target should compress to a higher fuel density and produce a higher yield than a target containing the same mass of fuel in the gaseous state[2].


Liquid Layer Solid Layer Radiation Shield Target Chamber Engineer Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Fraley and R. J. Mason, Phys. Rev. Lett. 35:520 (1975).CrossRefGoogle Scholar
  2. 2.
    R. J. Mason, Nucl. Fusion 15:1031 (1975).CrossRefGoogle Scholar
  3. 3.
    R. G. Schneggenburger, W. S. Updegrove, and R. L. Nolen Jr., Rev. Sci. Instrum. 49(11): 1543 (1978).CrossRefGoogle Scholar
  4. 4.
    T. M. Henderson, R. B. Jacobs, D. L. Musinski, R. J. Simms, and G. H. Wuttke, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 690.CrossRefGoogle Scholar
  5. 5.
    T. M. Henderson and R. R. Johnson, Appl Phys. Lett. 31:18 (1977).CrossRefGoogle Scholar
  6. 6.
    T. M. Henderson, D. L. Musinski, R. B. Jacobs, and R. J. Simms, in Chem. Eng. Progr. Symp. Series, to be published.Google Scholar
  7. 7.
    R. L. Berger et al., in Proc. 7th Intern. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Vol. 3, IAEA, Innsbruck, Austria (1979).Google Scholar
  8. 8.
    T. M. Henderson, R. J. Simms, and R. B. Jacobs, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 682.CrossRefGoogle Scholar
  9. 9.
    J. R. Miller, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 669.CrossRefGoogle Scholar
  10. 10.
    R. L. Woeraer and C. D. Hendricks, Technical Digest—Topical Meeting on Inertial Confinement Fusion, ThEl0, San Diego, California, February 7–9,1978.Google Scholar
  11. 11.
    J. R. Miller, R. D. Day, E. H. Farnum, W. G. Hansen, H. E. Tucker, and W. A. Teasdale, Technical Digest—Topical Meeting on Inertial Confinement Fusion, ThE10, San Diego, California, February 7–9, 1978.Google Scholar
  12. 12.
    J. A. Tarvin, D. L. Musinski, T. R. Pattinson, R. D. Sigler and G. E. Busch, in Proc. 23rd Intern. Symposium and Instrument Display of the Society of Photo-Optical Instrumentation Engineers, San Diego, California, to be published.Google Scholar
  13. 13.
    B. J. Sanders, Appl. Opt. 6:1 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • D. L. Musinski
    • 1
  • T. M. Henderson
    • 1
  • R. J. Simms
    • 1
  • T. R. Pattinson
    • 1
  • R. B. Jacobs
    • 2
  1. 1.KMS Fusion, Inc.Ann ArborUSA
  2. 2.R. B. Jacobs Associates, Inc.BoulderUSA

Personalised recommendations