Skip to main content

Engineering Aspects of Cryogenic Laser-Fusion Targets

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35 A))

  • 501 Accesses

Abstract

For efficient burn of the deuterium-tritium fuel contained within a hollow, spherical laser fusion target the fuel core must first be driven to a high density and then subsequently be elevated in temperature to initiate the reaction. To achieve high final fuel densities the internal pressure within the target must be overcome during the implosion. A cryogenic target, one in which the fuel is condensed as a liquid or solid layer on the inner surface of the spherical shell, may overcome the mechanisms [1] which can limit the final density. Fuel initially confined to the wall of the target cannot respond quickly enough upon absorption of energy to fill the interior volume of the target before the target implodes. At a given level of laser power, a cryogenic liquid or solid layer target should compress to a higher fuel density and produce a higher yield than a target containing the same mass of fuel in the gaseous state[2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. S. Fraley and R. J. Mason, Phys. Rev. Lett. 35:520 (1975).

    Article  Google Scholar 

  2. R. J. Mason, Nucl. Fusion 15:1031 (1975).

    Article  Google Scholar 

  3. R. G. Schneggenburger, W. S. Updegrove, and R. L. Nolen Jr., Rev. Sci. Instrum. 49(11): 1543 (1978).

    Article  Google Scholar 

  4. T. M. Henderson, R. B. Jacobs, D. L. Musinski, R. J. Simms, and G. H. Wuttke, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 690.

    Book  Google Scholar 

  5. T. M. Henderson and R. R. Johnson, Appl Phys. Lett. 31:18 (1977).

    Article  Google Scholar 

  6. T. M. Henderson, D. L. Musinski, R. B. Jacobs, and R. J. Simms, in Chem. Eng. Progr. Symp. Series, to be published.

    Google Scholar 

  7. R. L. Berger et al., in Proc. 7th Intern. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Vol. 3, IAEA, Innsbruck, Austria (1979).

    Google Scholar 

  8. T. M. Henderson, R. J. Simms, and R. B. Jacobs, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 682.

    Book  Google Scholar 

  9. J. R. Miller, in Advances in Cryogenic Engineering, Vol. 23, Plenum Press, New York (1978), p. 669.

    Book  Google Scholar 

  10. R. L. Woeraer and C. D. Hendricks, Technical Digest—Topical Meeting on Inertial Confinement Fusion, ThEl0, San Diego, California, February 7–9,1978.

    Google Scholar 

  11. J. R. Miller, R. D. Day, E. H. Farnum, W. G. Hansen, H. E. Tucker, and W. A. Teasdale, Technical Digest—Topical Meeting on Inertial Confinement Fusion, ThE10, San Diego, California, February 7–9, 1978.

    Google Scholar 

  12. J. A. Tarvin, D. L. Musinski, T. R. Pattinson, R. D. Sigler and G. E. Busch, in Proc. 23rd Intern. Symposium and Instrument Display of the Society of Photo-Optical Instrumentation Engineers, San Diego, California, to be published.

    Google Scholar 

  13. B. J. Sanders, Appl. Opt. 6:1 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Musinski, D.L., Henderson, T.M., Simms, R.J., Pattinson, T.R., Jacobs, R.B. (1980). Engineering Aspects of Cryogenic Laser-Fusion Targets. In: Timmerhaus, K.D., Snyder, H.A. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9856-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9856-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9858-5

  • Online ISBN: 978-1-4613-9856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics