Skip to main content

Techniques for Reducing Radiation Heat Transfer between 77 and 4.2 K

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35 A))

Abstract

The present-day applied superconductivity is a liquid-helium-based technology. The efficiency of a cryogenic or superconducting device is determined by its rate of consumption of the cryogen. Liquid helium has an extremely small heat of vaporization; thus, its storage almost always requires a state-of-the-art insulating method. Radiation heat leak becomes significantly more important as larger superconducting devices are built, such as huge high-energy physics analysis magnets, fusion reactor systems, and energy storage facilities. For large superconducting magnets,[1–3] it is common practice to surround the liquid helium vessel with a nitrogen shield (at 77 K) and wrap multilayer insulation around both the liquid helium vessel and the nitrogen shield in an attempt to further reduce the heat leaks (Fig. 1a). Multilayer insulation is inexpensive and generally effective; yet, it is a rather difficult material to apply because its performance depends on a few hard-to-control parameters such as the layer density, the compressive loading, and the lateral heat transfer effect. The effective insulation capability obtained in practice is at least a factor of 2 worse than carefully measured laboratory values (or those claimed by manufacturers). Careless and/or inexperienced application can easily generate heat leak values a few times higher than the predicted value, especially when dealing with peculiarly shaped cryostats.

Work sponsored by the U. S. Department of Energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

= cold surface area

c :

= velocity of light

C s :

= liquid specific heat at saturation

dm t /dt :

= rate of change of mass flow rate

dp/dt :

= rate of change of atmospheric pressure

E g :

= energy gap (threshold)

ER:

= evaporation rate owing to change in atmospheric pressure

h :

= Planck’s constant

h v :

= heat of vaporization

H c :

= critical field of a superconductor

k :

= Boltzmann’s constant

I :

= (C s /V L h v ), (∂T/∂p) sat

k :

= thermal conductivity

kρ:

= thermal conductivity x mass density

P :

= barometric pressure

\(\dot Q\) :

= heat transfer rate

(RRR) T :

= residual resistivity ratio, i.e., ratio of electrical resistivity of a material at room temperature, ρ 300 K, to electrical resistivity of a material at temperature T, ρ T .

t :

= time

T :

= temperature

T 1 :

= 4.2 K (liquid helium temperature)

T 2 :

= 77.4 K (liquid nitrogen temperature)

T c :

= critical temperature of a superconductor

V :

= container volume (liters)

V L :

= volume of liquid involved

ε 1 :

= surface emissivity of the cold surface

ε 2 :

= surface emissivity of the hot surface

λ :

= frequency

v :

= wavelength

ρ :

= electrical resistivity

(∂T/∂ρ)sat :

= slope of the temperature vapor curves

σ :

= Stefan-Boltzmann constant

References

  1. R. C. Niemann, S. T. Wang, W. J. Pelczarski, D. L. Hillis, L. Turner, M. G. Srinivasan, J. R. Purcell, D. B. Montgomery, J. E. C. Williams, A. M. Hatch, P. Marston, P. Smelser, V. B. Zenekevitch, and L. A. Kirjenin, ANL-HEP-CP-76–29 (1976).

    Google Scholar 

  2. J. Pearson, P. Smelser, and R. C. Niemann, “PEP Magnet Design,” ANL internal report (1976).

    Google Scholar 

  3. J. R. Heim, Fermilab TM-591–2750.00 (1975).

    Google Scholar 

  4. K. Kutznar, F. Schmidt, and I. Wietzke, Cryogenics 13:7 (1973).

    Article  Google Scholar 

  5. K. E. Leonhard and E. H. Hyde, Cryogenic Tech. 7(1): 12 (1971).

    Google Scholar 

  6. R. P. Caren and G. R. Cunnington, Chem. Eng. Progr. Symp. Series 64:87 (1968).

    Google Scholar 

  7. R. H. Kropschot, private communication.

    Google Scholar 

  8. R. B. Scott, Cryogenic Engineering, D. Van Nostrand, New York (1959), p. 153.

    Google Scholar 

  9. J. Chaussy, P. Gianese, and J. Peyrand, Cryogenics 16:10 (1976).

    Article  Google Scholar 

  10. M. M. Fulk, M. M. Reynolds, and O. E. Park, in Advances in Cryogenic Engineering, Vol. 1, Plenum Press, New York (1960), p. 224.

    Book  Google Scholar 

  11. P. F. Dickson and M. C. Jones, Cryogenics 8(2):24 (1968).

    Article  Google Scholar 

  12. F. J. Zimmerman, J. Appl. Phys. 26(12): 1483 (1955).

    Article  Google Scholar 

  13. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108:1175 (1957).

    Article  Google Scholar 

  14. R. H. Kropschot, B. W. Birmingham, and D. B. Mann, Technology of Liquid Helium, NBS Monograph III (1968), p. 164.

    Google Scholar 

  15. K. H. Hawks and W. B. Cottingham, in Advances in Cryogenic Engineering, Vol. 16, Plenum Press, New York (1970), p. 467.

    Google Scholar 

  16. R. B. Scott, Cryogenic Engineering, D. Van Nostrand, New York (1959),-p. 239.

    Google Scholar 

  17. D. A. Ditamars and G. T. Furukawa, NBS J. Res. 69C(1):35 (1965).

    Google Scholar 

  18. R. Nikolaus, J. Appl. Math. Phys. (ZAMP) 24:54(1973).

    Google Scholar 

  19. R. S. Collier, NBS Report 10–749 (1972).

    Google Scholar 

  20. T. von Hoffmann, U. Lienert and H. Quack, Cryogenics 13:490 (1973).

    Article  Google Scholar 

  21. F. R. Fickett, Cryogenics, 11:349 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leung, E.M.W., Fast, R.W., Hart, H.L., Heim, J.R. (1980). Techniques for Reducing Radiation Heat Transfer between 77 and 4.2 K. In: Timmerhaus, K.D., Snyder, H.A. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9856-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9856-1_59

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9858-5

  • Online ISBN: 978-1-4613-9856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics