Skip to main content

Vapor Locking and Heat Transfer under Transient and Steady-State Conditions

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 35 A))

Abstract

The technology of stable superconducting magnets has become synonymous with the study and use of composite conductors. The composite conductor, a superconductor paralleled with a normal metal, helps provide magnet stability by supplying alternate electrical and thermal paths for the superconductor when it becomes normal. If these alternate paths of normal metal can carry the total transport current continuously and still remain below the transition temperature of the superconductor, the composite conductor is said to be cryostable. The operational definition of cryostability requires sufficient cooling to dissipate Joule heating.

Work supported by the U.S. Department of Energy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Wilson and Y. Iwasa, Cryogenics 18(1):17 (1978).

    Article  Google Scholar 

  2. C. N. Whetstone and R. W. Boom, in Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 68.

    Google Scholar 

  3. O. Tsukamoto and S. Kobayashi, J. Appl Phys. 46:1359 (1975).

    Article  Google Scholar 

  4. G. B. James, K. G. Lewis, and B. J. Maddock, Cryogenics 10:480 (1970).

    Article  Google Scholar 

  5. M. A. Hilal, J. W. Dawson, J. D. Gonczy, L. R. Turner, and S.-T. Wang, IEEE Trans, Magn. Mag-15:59 (1979).

    Article  Google Scholar 

  6. S.-T. Wang, R. C. Niemann, L. R. Turner, L. Genens, W. Pelczarski, J. Gonczy, J. Hoffman, Y-C. Huang, N. Modjeski, and E. Kraft, IEEE Trans. Magn. Mag-15:302 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, CJ., Wang, ST., Dawson, J.W. (1980). Vapor Locking and Heat Transfer under Transient and Steady-State Conditions. In: Timmerhaus, K.D., Snyder, H.A. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 35 A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9856-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9856-1_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9858-5

  • Online ISBN: 978-1-4613-9856-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics