Superconducting Magnet System for the Spirit Cosmic Ray Space Telescope

  • M. A. Green
  • J. M. DeOlivares
  • G. Tarle
  • P. B. Price
  • E. K. Shirk
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 35 A)

Abstract

The identity of the source of the cosmic radiation is one of the oldest and most interesting unanswered questions of 20th-century physics. While it has become increasingly clear that these energetic particles owe their existence to some of the most violent processes that occur in our galaxy (e.g., supernovae), a detailed understanding of the cosmic ray source and the conditions of galactic propagation has not been achieved. Of particular interest in this regard is the isotopic composition of the cosmic radiation since nuclear abundance anomalies would provide the most exciting clues as to their nuclear origin. The iron isotopes provide the most fruitful candidates for such a study since they are both abundant and are least modified by galactic transport. To date the most accurate isotopic studies of the iron group cosmic rays [1]have ruled out large deviations from solar system source composition. In order to achieve a convincing separation of the isotopes of iron it is necessary to design an instrument which can collect over 104 iron nuclei and achieve a mass resolution of σ ≲ 0.15 amu.

Keywords

Total Heat Helium Epoxy Refrigeration Smit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Tarle, S. P. Ahen, and B. G. Cartwright, Phys. Rev. Utt. 41:771 (1978).Google Scholar
  2. 2.
    B. G. Cartwriht, E. K. Shirk, and P. B. Price, NucL Instrum. Meth. 153:457 (1978).CrossRefGoogle Scholar
  3. 3.
    M. A. Green, in Advances in Cryogenic Engineering, Vol. 21, Plenum Press, New York (1975), p. 24.Google Scholar
  4. 4.
    M. A. Green, Doctoral Dissertation, University of California, Berkeley, California (1977).Google Scholar
  5. 5.
    M. A. Green, P. H. Eberhard, J. D. Taylor, W. A. Burns, B. Garfinkel, G. H. Gibson, P. B. Miller, R. R. Ross, R. G. Smits, and H. W. Van Slyke, IEEE Trans. Magn. Mag. l5(l):128 (1979).CrossRefGoogle Scholar
  6. 6.
    M. A. Green, P. B. Miller, and W. F. Wenzel, in Nonmetallic Materials and Composites at Low Temperatures, Plenum Press, New York (1979).Google Scholar
  7. 7.
    M. A. Green, W. A. Burns, and J. D. Taylor, in Advances in Cryogenic Engineering, Vol. 25, Plenum Press, New York (1980), p. 420.Google Scholar
  8. 8.
    W. L. Pope, G. F. Smoot, L. H. Smith, and C. E. Taylor, in Advances in Cryogenic Engineering, Vol. 20, Plenum Press, New York (1974), p. 47.Google Scholar
  9. 9.
    W. L. Pope, L. H. Smith, and G. F. Smoot, U. S. Patent 4027494 (1977)Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • M. A. Green
    • 1
  • J. M. DeOlivares
    • 1
  • G. Tarle
    • 2
  • P. B. Price
    • 2
  • E. K. Shirk
    • 1
  1. 1.Lawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations