Elastic Constants at Low Temperatures: Recent Measurements on Technological Materials at NBS

  • H. M. Ledbetter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 24)


Solid-state low-temperature elastic properties have been studied experimentally at the NBS Cryogenics Division for four years [1–18]. Most studies were between room temperature and liquid-helium temperature; some were only to liquid-nitrogen temperature. In this paper these studies are reviewed for 47 technological materials—metals, alloys, and composites—listed in Table I. Elastic constants primarily discussed are Young’s modulus, the shear modulus, the bulk modulus (reciprocal compressibility), and Poisson’s ratio. Young’s modulus, E, the shear modulus, G, and the bulk modulus, B, are the elastic resistances to uniaxial, shear or torsional, and hydrostatic stresses, respectively. All these moduli have units of stress. Poisson’s ratio, ν, is the dimensionless negative ratio of transverse strain to longitudinal strain under uniaxial stress.


Shear Modulus Elastic Constant Bulk Modulus Austenitic Stainless Steel Maraging Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



bulk modulus


general elastic-stiffness constant


Young’s modulus


electron/atom ratio




shear or torsional modulus


specimen length


parameter in Varshni equation


transit time, Einstein temperature


temperature, Kelvin


sound velocity



Greek symbols




Poisson’s ratio


mass density









Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Ledbetter, unpublished studies, Cryogenics Division, NBS Institute for Basic Standards, Boulder, Colorado.Google Scholar
  2. 2.
    E. R. Naimon, H. M. Ledbetter, and W. F. Weston, J. Mater. Sci. 10:1309 (1975).CrossRefGoogle Scholar
  3. 3.
    D. T. Read and H. M. Ledbetter, J. Eng. Mater. Technol. 99:181 (1977).CrossRefGoogle Scholar
  4. 4.
    W. F. Weston and H. M. Ledbetter, in Ultrasonic Symposium Proceedings, IEEE 75Ch8994-4SU, New York (1975), p. 623.Google Scholar
  5. 5.
    H. M. Ledbetter, Metall. Trans. 8A:1006 (1977).Google Scholar
  6. 6.
    H. M. Ledbetter, Z. Metallkd. 68:506 (1977).Google Scholar
  7. 7.
    H. M. Ledbetter and D. T. Read, Metall. Trans. 8A:1805 (1977).Google Scholar
  8. 8.
    W. F. Weston, H. M. Ledbetter, and E. R. Naimon, Mater. Sci. Eng. 20:185 (1975).CrossRefGoogle Scholar
  9. 9.
    E. R. Naimon, W. F. Weston, and H. M. Ledbetter, Cryogenics 14:246 (1974).CrossRefGoogle Scholar
  10. 10.
    W. F. Weston, E. R. Naimon, and H. M. Ledbetter, in Materials for Liquefied Natural Gas Tankage, ASTM STP 579 (1975), p. 397.Google Scholar
  11. 11.
    H. M. Ledbetter, W. F. Weston, and E. R. Naimon, J. Appl. Phys. 46:3855 (1975).CrossRefGoogle Scholar
  12. 12.
    W. F. Weston and H. M. Ledbetter, Mater. Sci. Eng. 20:287 (1975).CrossRefGoogle Scholar
  13. 13.
    H. M. Ledbetter, E. R. Naimon, and W. F. Weston, in Advances in Cryogenic Engineering, Volume 22, Plenum Press, New York (1975), p. 174.Google Scholar
  14. 14.
    H. M. Ledbetter, Mater. Sci. Eng. 29:255 (1977).CrossRefGoogle Scholar
  15. 15.
    D. T. Read and H. M. Ledbetter, J. Appl. Phys. 48:2827 (1977).CrossRefGoogle Scholar
  16. 16.
    W. F. Weston, J. Appl. Phys. 46:4458 (1975).CrossRefGoogle Scholar
  17. 17.
    H. M. Ledbetter and D. T. Read, J. Appl. Phys. 48:1874 (1977).CrossRefGoogle Scholar
  18. 18.
    D. T. Read and H. M. Ledbetter, Composites 9:100 (1978).CrossRefGoogle Scholar
  19. 19.
    G. Sines, Elasticity and Strength, Allyn and Bacon, Boston (1969).Google Scholar
  20. 20.
    B. Boley and J. Weiner, Theory of Thermal Stresses, John Wiley and Sons, New York (1960).Google Scholar
  21. 21.
    J. F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, England (1973), p. 1.Google Scholar
  22. 22.
    H. M. Ledbetter, J. Appl. Phys. 44:1451 (1973).CrossRefGoogle Scholar
  23. 23.
    R. E. Barker, J. Appl. Phys. 34:107 (1963).CrossRefGoogle Scholar
  24. 24.
    M. Blackman, Proc. Phys. Soc. A 64:681 (1951).CrossRefGoogle Scholar
  25. 25.
    P. G. Klemens, in Solid State Physics, Vol. 7 (F. Seitz and D. Turnbull, eds.), Academic Press, New York (1958). p. 46.Google Scholar
  26. 26.
    A. D. LeClaire, Acta Metall. 1:438 (1953).CrossRefGoogle Scholar
  27. 27.
    M. Blackman, in Handbuch der Physik, Vol. VII-1, Springer-Verlag, Berlin (1955), p. 341.Google Scholar
  28. 28.
    C. Domb and L. Salter, Philos. Mag. 43:1038 (1952).Google Scholar
  29. 29.
    I. S. Radovskii, J. Appl. Mech. Tech. Phys. 7:175 (1966).Google Scholar
  30. 30.
    P. Debye, Ann. Phys. 39:789 (1912).CrossRefGoogle Scholar
  31. 31.
    J. DeLaunay and R. L. Dolecek, Phys. Rev. 72:141 (1947).CrossRefGoogle Scholar
  32. 32.
    D. Pines, Elementary Excitations in Solids, Benjamin, New York (1963), p. 34.Google Scholar
  33. 33.
    H. Warlimont, G. Hausch, A. Prasetyo, and F. Reynard, in New Aspects of Martensitic Transformations, Japan Institute of Metals, Kobe (1976), p. 153.Google Scholar
  34. 34.
    K. Mukherjee, Philos. Mag. 12:915 (1965).CrossRefGoogle Scholar
  35. 35.
    E. S. Fisher and C. R. Alfred, Trans. Met. Soc. AIME 242:1575 (1968).Google Scholar
  36. 36.
    S. F. Pugh, Philos. Mag. 45:823 (1954).Google Scholar
  37. 37.
    J. J. Gilman, Aust. J. Phys. 13:327 (1960).CrossRefGoogle Scholar
  38. 38.
    R. L. Fleischer, Acta Metall. 11:203 (1963).CrossRefGoogle Scholar
  39. 39.
    C. Zener, Acta Crystallogr. 2:163 (1949).CrossRefGoogle Scholar
  40. 40.
    M. M. Khruschov, Wear 28:69 (1974).CrossRefGoogle Scholar
  41. 41.
    A. Kelly, Strong Solids, Clarendon, Oxford, England (1966), p. 1.Google Scholar
  42. 42.
    G. Leibfried, in Diffusion in Body-Centered Cubic Metals, ASM, Metals Park, Ohio (1965), p. 108.Google Scholar
  43. 43.
    A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T. Stewart, and R. Bowers, Phys. Rev. 128:1112 (1962).CrossRefGoogle Scholar
  44. 44.
    K. Lonsdale, Acta Crystallogr. 1:142 (1948).CrossRefGoogle Scholar
  45. 45.
    R. W. James, The Optical Principles of the Diffraction of X-rays, Bell, London, England (1954), p. 215.Google Scholar
  46. 46.
    H. A. Jahn, Proc. R. Soc. London A 179:320 (1941).Google Scholar
  47. 47.
    W. M. Visscher, Ann. Phys. 9:194 (1960).CrossRefGoogle Scholar
  48. 48.
    C. S. G. Cousins, J. Phys. C. 2:765 (1969).CrossRefGoogle Scholar
  49. 49.
    H. J. McSkimin, J. Acoust. Soc. Am. 33:12 (1961).CrossRefGoogle Scholar
  50. 50.
    J. Marx, Rev. Sci. Instrum. 22: 503 (1951).CrossRefGoogle Scholar
  51. 51.
    E. R. Fuller, A. V. Granato, J. Holder, and E. R. Naimon, in Methods of Experimental Physics, Academic Press, New York (1974), p. 405.Google Scholar
  52. 52.
    Y. P. Varshni, Phys. Rev. B. 2:3952 (1970).CrossRefGoogle Scholar
  53. 53.
    H. M. Ledbetter, Mater. Sci. Eng. 27:133 (1977).CrossRefGoogle Scholar
  54. 54.
    S. G. Fedotov and P. K. Belousov, Fiz. Met. Metalloved. 17:732 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • H. M. Ledbetter
    • 1
  1. 1.National Bureau of StandardsBoulderUSA

Personalised recommendations