Nb3Ge as a Potential Candidate Material for 15- to 25-T Magnets

  • M. R. Daniel
  • A. I. Braginski
  • G. W. Roland
  • J. R. Gavaler
  • A. T. Santhanam
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 24)


The Nb3Ge compound is a promising candidate material for superconducting magnets in the 15- to 25-T range at 4.2 K. Preliminary work [1] on thin films of sputtered material revealed that this A15 superconductor possessed an upper critical field (H c2) around 37 T at 4.2 K and a critical temperature, T c , of 22 to 23 K. Measurements of the critical current density, J c , gave a value of 1 GA m−2 at 21 T and 4.2 K, the highest recorded value at this field. J c values in the range 0.5 to 1 GA m−2 at the operating field density and temperature are considered adequate for constructing a magnet. Therefore, Nb3Ge is indeed a promising material for very high field applications. Growth of Nb3Ge by chemical vapor deposition (CVD) lends itself readily to the manufacture of lengths of conductor in tape form. This work concentrates on the CVD material. Other fabrication techniques, such as electron beam evaporation or high-rate magnetron sputtering, could also be amenable to the production of lengths of tape conductor.


Chemical Vapor Deposition Critical Current Density High Field Application Potential Candidate Material Tape Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



magnetic field


upper critical field


perpendicular magnetic field


parallel magnetic field


critical current density


transition temperature


deposition temperature

Greek symbols


transition temperature width


coherence length


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Foner, E. J. McNiff, Jr., J. R. Gavaler, and M. A. Janocko, Phys. Lett. 47A:485 (1975).Google Scholar
  2. 2.
    G. W. Roland and A. I. Braginski, in Advances in Cryogenic Engineering, Vol. 22, Plenum Press, New York (1977), p. 347.CrossRefGoogle Scholar
  3. 3.
    A. I. Braginski, G. W. Roland, and M. R. Daniel, Appl. Polym. Symp. 29:43 (1976).Google Scholar
  4. 4.
    A. I. Braginski, J. R. Gavaler, G. W. Roland, M. R. Daniel, M. A. Janocko, and A. T. Santhanam, IEEE Trans. Magn. MAG-13:300 (1977).CrossRefGoogle Scholar
  5. 5.
    A. I. Braginski, G. W. Roland, M. R. Daniel, A. T. Santhanam, and K. W. Guardipee, J. Appl. Phys. 49: 736 (1978).CrossRefGoogle Scholar
  6. 6.
    A. T. Santhanam, J. Appl. Phys. 48:3347 (1977).CrossRefGoogle Scholar
  7. 7.
    M. R. Daniel, Cryogenics 16:727 (1976).CrossRefGoogle Scholar
  8. 8.
    E. J. Kramer, J. Appl. Phys. 44:1360 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • M. R. Daniel
    • 1
  • A. I. Braginski
    • 1
  • G. W. Roland
    • 1
  • J. R. Gavaler
    • 1
  • A. T. Santhanam
    • 1
  1. 1.Westinghouse R and D CenterPittsburghUSA

Personalised recommendations