Skip to main content

Temperature Dependence of Creep in F.C.C. and H.C.P. Metals at Low Temperature

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 24))

Abstract

Low-temperature creep was first studied by Meissner et al. in 1930 [1]. They found that above the yield stress there is appreciable creep even at liquid-helium temperatures. This result gave impetus to further studies at low temperatures. Characterizing creep in cadmium as “athermic” at 1.4 to 4.2 K, Glen [2] assumed that creep proceeds by dislocation tunneling through crystalline lattice barriers. Arko and Weertman [3] revealed the sensitivity of creep to temperature at 4 K and inferred that it was the common thermally activated creep. Gindin et al. [4] assumed combined thermal activation and tunneling mechanisms. At the present time, there is not unanimous opinion on the nature of low-temperature creep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

lattice parameter

b:

constant

c:

constant

C:

dislocation linear tension

h:

Planck’s constant

ℏ:

h/2π

k:

Boltzmann’s constant

M:

dislocation linear mass

Q:

activation energy

t:

time

T:

temperature

T D :

Debye temperature

T:

effective temperature

V, V:

activation volumes

W:

probability of dislocation fluctuation departure from an obstacle

α:

creep proportionality constant

α0 :

α at T = 0

γ:

time proportionality constant

ε:

strain

ε̇:

creep rate

θ:

characteristic temperature

κ:

stress-hardening coefficient

ν:

atomic frequency

τ:

deformation stress

References

  1. W. Meissner, M. Polanyi, and E. Schmid, Zs. Phys. 66:477 (1930).

    Article  Google Scholar 

  2. J. M. Glen, Philos. Mag. 1(5) 400 (1956).

    Article  Google Scholar 

  3. A. C. Arko and J. Weertman, J. Met. 15(9) 674 (1963).

    Google Scholar 

  4. I. A. Gindin, V. P. Lebedev, and Ya. D. Starodubov, Fiz. Tverd. Tela (Leningrad) 11(10): 2802 (1969).

    Google Scholar 

  5. V. A. Koval, V. P. Soldatov, and V. I. Startsev, Fiz. Tverd. Tela (Leningrad) 12(10): 2906 (1970).

    Google Scholar 

  6. V. A. Koval, V. P. Soldatov, and V. I. Startsev, in Fizicheskiye protsessy plasticheskoy deformatsii prinizkikh temperaturakh, Naukova Dumka, Kiev, USSR (1974), p. 339.

    Google Scholar 

  7. N. F. Mott, Philos. Mag. 44: 742 (1953).

    Google Scholar 

  8. V. A. Koval, V. P. Soldatov, and V. I. Startsev, Fiz. Met. Metalloved. 38(2):422 (1974).

    Google Scholar 

  9. A. I. Osetski, V. P. Soldatov, and V. I. Startsev, Fiz. Met. Metalloved. 38(3):604 (1974).

    Google Scholar 

  10. V. D. Natsik, A. I. Osetskii, V. P. Soldatov, and V. I. Startsev, Phys. Status Solidi B 54(1):99 (1972).

    Article  Google Scholar 

  11. A. I. Osetskii, V. P. Soldatov, V. I. Startsev, and V. D. Natsik, Phys. Status Solidi A 22(2):739 (1974).

    Article  Google Scholar 

  12. V. I. Startsev, V. P. Soldatov, and A. I. Osetski, Fiz. Nizk. Temp. 1(1):83 (1975).

    Google Scholar 

  13. A. Seeger, in Dislocations and Mechanical Properties of Crystals, John Wiley & Sons, New York (1957), p. 206.

    Google Scholar 

  14. N. F. Mott, Philos. Mag. 1:568 (1956).

    Article  Google Scholar 

  15. A. C. Arko and J. Weertman, Acta Metall. 17(5):687 (1969).

    Article  Google Scholar 

  16. A. Granato and K. Lücke, J. Appl. Phys. 27(16):583 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koval, V.A., Osetski, A.I., Soldatov, V.P., Startsev, V.I. (1978). Temperature Dependence of Creep in F.C.C. and H.C.P. Metals at Low Temperature. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9853-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9853-0_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9855-4

  • Online ISBN: 978-1-4613-9853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics