Skip to main content

Large Superconducting Magnets for New Energy Technologies

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 24))

Abstract

Extensive and far-reaching plans are now being made for the development of new energy conversion technologies, which could begin to make a useful contribution to the supply of electric power by the end of the century. Three of these technologies demand the use of superconducting magnets on a scale that is extremely large in comparison with anything attempted so far; they are magnetohydrodynamic (MHD) power generation, controlled thermonuclear fusion, and magnetic energy storage. The challenge presented by these projects lies not only in their formidable size, but also in their need to attain new, high standards of reliability and safety, without jeopardizing the economic competitiveness of the complete system.

Invited paper.

Work supported by the U. S. Energy Research and Development Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B:

magnetic field

E:

magnetic stored energy

f m ):

protection factor as a function of maximum temperature rise (θ m ) in magnet

I:

current

J:

current density

N:

number of subunits of a coil

Q:

quality factor, characterizing the coil stress

S(θ):

specific heat per unit volume

V:

quench voltage

θ:

absolute temperature

θ m :

maximum temperature rise

μ0 :

permeability of free space

ρ(θ):

resistivity

σ:

stress

References

  1. W. D. Jackson, R. L. Lawit, R. A. Stoudt, M. G. Klett, J. C. Cutting, and C. D. Maxwell, in Proceedings, 16th Symposium on Engineering Aspects of Magnetohydrodynamics, available from Dr. John Fox, Dept. of Mechanical Eng., University of Mississippi, University, Mississippi 38677 (1977).

    Google Scholar 

  2. G. R. Seikel, R. J. Sovie, R. K. Burns, G. J. Barna, J. A. Burkhart, J. J. Nainiger, and J. M. Smith, in Proceedings, 15th Symposium on Engineering Aspects of Magnetohydrodynamics, available from Dr. John Fox, Dept. of Mechanical Eng., University of Mississippi, University, Mississippi 38677 (1976).

    Google Scholar 

  3. G. J. Womak, MHD Power Generation, Halstead Press, New York (1969).

    Google Scholar 

  4. J. F. Louis, AIAA J. 6: 1674 (1968).

    Article  Google Scholar 

  5. T. Bohia and P. Komarek, in Proceedings of 4th Intern. Conference on Magnet Technology, Brookhaven National Laboratory, Upton, New York (1972). Available from NTIS, Springfield, Virginia.

    Google Scholar 

  6. Y. Aiyama, in Proceedings of 5th Intern. Cryogenic Engineering Conference, IPC Science and Technology Press, Guildford, England (1974), p. 296.

    Google Scholar 

  7. Z. J. J. Stekly, A. M. Hatch, J. L. Zar, W. N. Latham, C. Borchert, A. El Bindari, R. E. Bernert, and T. A. De Winter, International Institute of Refrigeration, Commission 1, Liquid Helium Technology, Pergamon Press, Oxford, England (1966), p. 491.

    Google Scholar 

  8. P. Komarek, in Advances in Cryogenic Engineering, Vol. 21, Plenum Press, New York (1975), p. 115.

    Google Scholar 

  9. L. A. Artsimovich, Nucl. Fusion 12: 215 (1972).

    Article  Google Scholar 

  10. T. K. Fowler and B. G. Logan, Comments Plasma Phys. Controlled Fusion 2:167 (1977).

    Google Scholar 

  11. D. P. Ivanov, V. E. Keilin, E. K. J. Klimenko, I. A. Kovalev, S. I. Novikov, B. A. Stavissky, and N. A. Chernoplekov, IEEE Trans. Magn. MAG 13: 694 (1977).

    Article  Google Scholar 

  12. J. Parain, IEEE Trans. Magn. MAG 13: 613 (1977).

    Article  Google Scholar 

  13. F. Arendt, H. Brechna, J. Erb, P. Komarek, H. Krauth, and W. Maurer, in Proceedings of 9th Symposium on Fusion Technology, Pergamon Press, Oxford, England (1976), p. 107.

    Google Scholar 

  14. J. M. Williams, J. W. Beal, S. E. Coffman, C. D. Henning, and K. M. Zwilsky, in Proceedings of 2nd Topical Meeting on Technology of Controlled Nuclear Fusion, Vol. 3, U.S. Energy Research and Development Administration, available from NTIS, Springfield, Virginia (1976), p. 1075.

    Google Scholar 

  15. P. N. Haubenreich, W. C. Anderson, J. N. Luton, and P. B. Thompson, “Plan for the Large Coil Program,” ORNL/TM-5824, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1977).

    Google Scholar 

  16. W. Heinz, and P. Komarek, “Investigations of Cryogenic and Superconductivity Problems for Future Synchronous Generators and Tokamak Fusion Reactors,” paper presented at the World Electrotechnical Congress, Moscow, USSR, June 1977.

    Google Scholar 

  17. G. Krafft, “Cooling Methods for Superconducting Toroidal Field Coils,” Internal Report of the Kernforschungszentrum, Karlsruhe, West Germany (1976).

    Google Scholar 

  18. C. D. Henning, in Progress in Refrigeration Science and Technology, Vol. 1 (W. T. Pentzer, ed.), AVI Publishing, Westport, Connecticut (1973), p. 449.

    Google Scholar 

  19. R. H. Bulmer, M. O. Calderon, D. N. Cornish, T. A. Kozman, and S. J. Sackett, IEEE Trans. Magn. MAG 13: 700 (1977).

    Article  Google Scholar 

  20. R. W. Boom and H. A. Peterson, “Wisconsin Superconducting Energy Storage Project,” Vol. 11, Engineering Experiment Station, College of Engineering, University of Wisconsin, Madison (1976).

    Google Scholar 

  21. W. V. Hassenzahl and H. J. Boenig, “Superconducting Magnetic Energy Storage,” paper presented at the World Electrotechnical Congress, Moscow, June 1977.

    Google Scholar 

  22. W. V. Hassenzahl, B. L. Baker, and W. E. Keller, “Economics of Superconducting Magnetic Energy Storage Systems for Load Levelling,” LA-5377-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico (1973).

    Google Scholar 

  23. R. H. Levy, Am. Rocket Soc. J. 32:787 (1962).

    Google Scholar 

  24. J. Powell, D. Hsieh, and J. Lehner, “DEALS: A Demountable Externally Anchored Low Stress Superconducting Magnet System for Fusion Reactors,” BNL 50616, Brookhaven National Laboratory, Upton, New York (1976).

    Google Scholar 

  25. B. Badger, R. W. Conn, G. L. Kulcinski, C. W. Maynard, R. Aronstein, H. I. Avci, D. Blackfield, R. W. Boom, A. Bowles, E. Cameron, E. T. Cheng, R. Clemmer, S. Dalhed, J. Davis, G. A. Emmert, N. M. Ghonien, S. Chose, Y. Cohar, J. Kesner, S. Kuo, E. Larsen, E. Ramer, J. Scharer, D. Schluderberg, R. E. Schmunk, T. Y. Sung, I. Sviatoslavsky, D. K. Sze, W. F. Vogelsang, T. F. Yang, and W. D. Young, “UWMAK III, A Noncircular Tokamak Power Reactor Design,” UWFDM-150, Nuclear Engineering Department, University of Wisconsin, Madison, Wisconsin (1976).

    Google Scholar 

  26. Z. J. J. Stekly and J. L. Zar, “Stable Superconducting Coils,” Research Report 210, Avco-Everett Research Laboratory, Everett, Massachusetts (March 1965).

    Book  Google Scholar 

  27. B. J. Maddock, G. B. James, and W. T. Norris, Cryogenics 9:261 (1969).

    Article  Google Scholar 

  28. W. Y. Chen and J. R. Purcell, “Dynamic Simulation of Normal Zone Evolution in a Superconducting Composite,” submitted to J. Appl. Phys.

    Google Scholar 

  29. M. N. Wilson and Y. Iwasa, “Stability of Superconductors Against Localized Disturbances of Limited Magnitude,” submitted to Cryogenics.

    Google Scholar 

  30. Y. Iwasa, M. O. Hoenig, and D. B. Montgomery, IEEE Trans. Magn. MAG 13:678 (1977).

    Article  Google Scholar 

  31. M. N. Wilson and C. R. Walters, “Development of Superconductors for Fusion Technology,” RL-76-038, Rutherford Laboratory, Chilton, Oxon, England (1976).

    Google Scholar 

  32. M. C. Jones and W. W. Johnson, NBS Technical Note 675, National Bureau of Standards (1976).

    Google Scholar 

  33. J. R. Miller, Oak Ridge National Laboratory, Oak Ridge, Tennessee, private communication.

    Google Scholar 

  34. B. J. Maddock and G. B. James, Proc. Inst. Electr. Eng. 115:643 (1968).

    Article  Google Scholar 

  35. J. Powell (ed.), “Aspects of Safety and Reliability for Fusion Magnet Systems,” BNL 50542, Brookhaven National Laboratory, Upton, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, M.N. (1978). Large Superconducting Magnets for New Energy Technologies. In: Timmerhaus, K.D., Reed, R.P., Clark, A.F. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9853-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9853-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9855-4

  • Online ISBN: 978-1-4613-9853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics