Advertisement

Fatigue Crack Growth Rates of Structural Alloys at 4 K

  • R. L. Tobler
  • R. P. Reed
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 22)

Abstract

Recent developments in applied superconductivity have demonstrated the feasibility of constructing electrical machinery to operate at liquid helium temperature. A device such as a rotating superconducting generator contains structural members that are continually subjected to fatigue during operation at 4 K. The fatigue resistance of candidate structural materials in this environment is a vital design consideration, and fatigue studies at extreme cryogenic temperatures are currently of great practical importance.

Keywords

Fatigue Crack Stress Intensity Factor Crack Growth Rate Austenitic Stainless Steel Fatigue Crack Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. MacCrone, R. D. McCammon, and H. M. Rosenberg, Phil. Mag. 4:267 (1958).CrossRefGoogle Scholar
  2. 2.
    R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A 242:203 (1957).CrossRefGoogle Scholar
  3. 3.
    D. Hull, J. Inst. Met. 86:425 (1957).Google Scholar
  4. 4.
    L. P. Andreev and N. V. Novikov, Problems of Strength, No. 11:45 (1971).Google Scholar
  5. 5.
    I. A. Gindin, Ya. D. Starodubov, and M. P. Starolat, Ukrainian J. Phys. 18(11): 1899 (1973).Google Scholar
  6. 6.
    A. J. Nachtigall, S. J. Klima, and J. C. Freche, J. Mater. JMLSA 3:425 (1968).Google Scholar
  7. 7.
    A. J. Nachtigall, “Strain-Cycling Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium (4 K), in Liquid Nitrogen (78 K), and in Ambient Air (300 K),” NASA TN D-7532, NASA Lewis Research Center, Cleveland, Ohio (1974).Google Scholar
  8. 8.
    S. S. Manson, Exp. Mech. 5:193 (1965).CrossRefGoogle Scholar
  9. 9.
    E-399–74, Annual book of ASTM Standards, Part 10, ASTM, Philadelphia (1974), p. 432.Google Scholar
  10. 10.
    R. L. Tobler, R. P. Mikesell, R. L. Durcholz, and R. P. Reed, in: Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 261.Google Scholar
  11. 11.
    C. W. Fowlkes and R. L. Tobler, Eng. Frac. Mech., to be published (1976).Google Scholar
  12. 12.
    G. Irwin, “Fracture,” Handbuch der Physik, Vol. 6, Springer-Verlag, Berlin (1958), p. 551.Google Scholar
  13. 13.
    E. Roberts, Jr., Mater. Res. Stand. 9:27 (1969).Google Scholar
  14. 14.
    C. J. Guntner and R. P. Reed, ASM Trans. Quart. 55:399 (1962).Google Scholar
  15. 15.
    D. C. Larbalestier and H. W. King, Cryogenics 13:160 (1973).CrossRefGoogle Scholar
  16. 16.
    R. P. Reed and C. J. Guntner, Trans. AIME 230:1713 (1964).Google Scholar
  17. 17.
    J. F. Watson and J. L. Christian, in: Low Temperature Properties of High-Strength Aircraft and Missile Materials, ASTM STP 287, (1960), p. 170.Google Scholar
  18. 18.
    J. F. Watson and J. L. Christian, Trans. AIME 224:998 (1962).Google Scholar
  19. 19.
    D. Bhandarkar, V. F. Zackay, and E. R. Parker, Met. Trans. 3:2619 (1972).CrossRefGoogle Scholar
  20. 20.
    A. G. Pineau and R. M. Pelloux, Met. Trans. 5:1103 (1974).CrossRefGoogle Scholar
  21. 21.
    P. C. Paris, Fatigue-An Interdisciplinary Approach, Syracuse Univ. Press, Syracuse, New York (1964), p. 107.Google Scholar
  22. 22.
    P. C. Paris and F. Erdogan, J. Basic Eng. Trans, ASMED 85:528 (1963).CrossRefGoogle Scholar
  23. 23.
    N. L. Person and G. C. Wolfer, in: Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 80.Google Scholar
  24. 24.
    J. A. Feeney, J. C. McMillan, and R. P. Wei, Met. Trans. 1:1741 (1970).CrossRefGoogle Scholar
  25. 25.
    L. A. James and E. B. Schwenk, Jr., Met. Trans. 2:491 (1971).CrossRefGoogle Scholar
  26. 26.
    E. R. Naimon, W. F. Weston, and H. M. Ledbetter, Cryogenics 14:274 (1974).CrossRefGoogle Scholar
  27. 27.
    W. F. Weston, H. M. Ledbetter, and E. R. Naimon, Mater. Sci. Eng. 20:185 (1975).CrossRefGoogle Scholar
  28. 28.
    W. F. Weston, E. R. Naimon, and H. M. Ledbetter, in:Properties of Materials for LNG Tankage, ASTM STP 579 (1975), p. 397.Google Scholar
  29. 29.
    H. M. Ledbetter, W. F. Weston, and E. R. Naimon, J. Appl. Phys. 46:3855 (1975).CrossRefGoogle Scholar
  30. 30.
    A. L McEvily, in: Proceedings Conference of Fatigue and Fracture of Aircraft Structures and Materials, AFFDL-TR-70–144, Wright-Patterson Air Forces Base, Ohio, AD 719756 (1973).Google Scholar
  31. 31.
    G. T. Hahn, A. R. Rosenfield, and M. Sarrate, Tech. Rept. AFML-TR-67–143, Wright-Patterson Air Force Base, Ohio (1969).Google Scholar
  32. 32.
    R. C. Bates and W. G. Clark, Jr., Trans. ASM 62:380 (1969).Google Scholar
  33. 33.
    N. E. Frost, L. P. Pook, and K. Denton, Engr. Frac. Mech. 3:109 (1971).CrossRefGoogle Scholar
  34. 34.
    R. P. Reed, A. F. Clark, and E. C. Van Reuth (eds.), “Materials Research for Superconducting Machinery,” NBS/ARPA Semi-Annual Technical Report AD 780–596 and AD/A 004586 (1974).Google Scholar
  35. 35.
    S. Jin, J. W. Morris, Jr., and V. F. Zackay, in: Advances in Cryogenic Engineering, Vol. 19, Springer Science+Business Media New York (1972), p. 379.Google Scholar
  36. 36.
    J. M. Barsom, Trans. ASME .J. Eng. Ind. 93:1190 (1971).CrossRefGoogle Scholar
  37. 37.
    H. H. Johnson and P. C. Paris, Eng. Frac. Mech. 1:3 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. L. Tobler
    • 1
  • R. P. Reed
    • 1
  1. 1.Cryogenics DivisionNBS Institute for Basic StandardsBoulderUSA

Personalised recommendations