Advertisement

Low-Temperature Thermal Conductivity and Dislocation Structures in Copper-Aluminum Alloys under High-Cycle, Low-Stress Fatigue

  • T. K. Chu
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 22)

Abstract

Low-temperature thermal conductivity measurements have been shown in recent years [1,2,3] to yield information on dislocations in mechanically deformed materials. More specifically, the lattice component of the thermal conductivity (phonon conductivity) at low temperatures is sensitive to dislocations and their spatial arrangements, and hence can be a useful tool in the study of mechanical deformation. This low-temperature lattice thermal conductivity method, besides having the advantage of being nondestructive to the samples, would be especially useful in investigating deformations at low temperatures. With the proper design of apparatus, it is possible to carry out the deformation and the thermal conductivity measurements without specimen warming.

Keywords

Dislocation Density Dislocation Structure Cyclic Deformation Lattice Thermal Conductivity Crystal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Klemens, in: Solid State, Physics, Vol. 7 (F. Seitz and D. Turnbull, eds.), Academic Press, New York (1969), p. 1.Google Scholar
  2. 2.
    T. K. Chu, J. Appl. Phys. 46:5101 (1975).CrossRefGoogle Scholar
  3. 3.
    J. N. Lomer and H. M. Rosenberg, Phil. Mag. 4:467 (1959).CrossRefGoogle Scholar
  4. 4.
    C E. Feltner and C. Laird, Acta Met. 15:1133 (1967).CrossRefGoogle Scholar
  5. 5.
    C. S. Pande and P. M. Hazzeldine, Phil. Mag. 24:1039 (1971).CrossRefGoogle Scholar
  6. 6.
    P. J. Woods, Phil. Mag. 28:155 (1973).CrossRefGoogle Scholar
  7. 7.
    T. K. Chu and F. P. Lipschultz, J. Appl. Phys., 43:2505 (1972).CrossRefGoogle Scholar
  8. 8.
    J. W. Steed, Proc. Roy. Soc A249:114 (1966).Google Scholar
  9. 9.
    J. A. M. Salter and P. Charsley, Phys. Stat. Solidi. 21:357 (1967).CrossRefGoogle Scholar
  10. 10.
    A. D. W. Leaver and P. Charsley, J. Phys. F: Met. Phys., 1:28 (1971).CrossRefGoogle Scholar
  11. 11.
    G. K. White, Australian J. Phys. 6:397 (1960).CrossRefGoogle Scholar
  12. 12.
    C. S. Barrett and T. B. Massalski, Structure of Metals, 3rd ed., McGraw Hill Book Company, New York (1966).Google Scholar
  13. 13.
    R. L. Seagall, P. G. Partidge, and P. B. Hirsch, Phil. Mag. 6:1493 (1961).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • T. K. Chu
    • 1
  1. 1.University of ConnecticutStorrsUSA

Personalised recommendations