Liquid-Vapor Equilibria in the Nitrogen-Methane System between 95 and 120 K

  • W. R. Parrish
  • M. J. Hiza
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 19)


The development and evaluation of liquid mixture (solution) theory depends heavily on the availability of precise data for mixtures of simple molecules. The most useful data are for binary mixtures at closely spaced temperatures over as wide a temperature range as possible, both above and below the critical temperature of the most volatile component. The nitrogen—methane mixture, which is technologically important as one of the more important binary mixtures in liquefied natural gas, is an excellent compromise between theoretical and practical considerations.


Virial Coefficient Excess Molar Volume Excess Gibbs Energy Phase Equilibrium Data Pure Methane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. T. Bloomer and J. T. Parent, Chem. Eng. Progr. Symp. Series, 49(6): 11 (1953).Google Scholar
  2. 2.
    L. W. Brandt and L. Stroud, Ind. Eng. Chem., 50:859 (1958).Google Scholar
  3. 3.
    M. R. Cines, J. T. Roach, R. J. Hogan, and C. H. Roland, Chem. Eng. Progr. Symp. Series, 49(6): 1 (1953).Google Scholar
  4. 4.
    S.-D. Chang and B. C.-Y. Lu, Chem. Eng. Progr. Symp. Series, 63(81): 18 (1967).Google Scholar
  5. 5.
    H. Cheung and D. I.-J. Wang, Ind. Eng. Chem. Fund., 3(4):355 (1964).CrossRefGoogle Scholar
  6. 6.
    V. G. Fastovskii and Yu. V. Petrovskii, Zh. Fiz. Khim., 31:2317 (1957).Google Scholar
  7. 7.
    W. Forg and P. Wirtz, Linde Rep. Sei. Techno., 15:46 (1970).Google Scholar
  8. 8.
    S. Fuks and A. Bellemans,Bull. Soc. Chim. Belg., 76:290 (1967).CrossRefGoogle Scholar
  9. 9.
    H. A. McTaggart and E. Edwards, Trans. Roy. Soc. Can., 13 (Sect. III):57 (1919).Google Scholar
  10. 10.
    R. C. Miller, A. J. Kidnay, and M. J. Hiza, AIChE J., 19(1): 145 (1973).CrossRefGoogle Scholar
  11. 11.
    V. G. Skripka, I. E. Nikitina, L. A. Zhdanovich, A. G. Sirotin, and O. A. Benyaminovich, Gazov. Prom., 15(12): 35 (1970).Google Scholar
  12. 12.
    F. B. Sprow and J. M. Prausnitz, AIChEJ., 12(4): 780 (1966).CrossRefGoogle Scholar
  13. 13.
    R. Stryjek, P. S. Chapjlear, and R. Kobayashi, Low Temperature Vapor-Liquid Equilibria of the Nitrogen-Methane, Nitrogen-Ethane, and Nitrogen-Methane-Ethane Systems, Monograph, Rice University, Houston, Texas (June 30, 1972).Google Scholar
  14. 14.
    N. S. Torochesnikov and L. A. Levius, J. Chem. Ind. (USSR), 16(1): 19 (1939).Google Scholar
  15. 15.
    E. Vellinger and E. Pons, Compt. Rend., 217:689 (1943).Google Scholar
  16. 16.
    V. G. Fastovskii and Yu. A. Krestinskii, J. Phys. Chem. (USSR), 15:525 (1941).Google Scholar
  17. 17.
    M. F. Fedorova, J. Exptl. Theoret. Phys. (USSR), 8:425 (1938).Google Scholar
  18. 18.
    D. W. Moran, Ph.D. Dissertation, Imperial College, University of London, London (1959).Google Scholar
  19. 19.
    M. H. Omar, Z. Dokoupil, and H. G. M. Schroten,Physica, 28(4):309 (1962).CrossRefGoogle Scholar
  20. 20.
    H. E. Bamer and S. B. Adler, Hydrocarbon Process., 47(10): 150 (1968).Google Scholar
  21. 21.
    M.-S. Lin and L. M. Naphtali, AIChEJ., 9(5): 580 (1963).CrossRefGoogle Scholar
  22. 22.
    H. H. Stotler and M. Benedict, Chem. Eng. Progr. Symp. Series, 49(6):25 (1953).Google Scholar
  23. 23.
    G. M. Wilson, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 168.Google Scholar
  24. 24.
    Y.-P. Liu and R. C. Miller, J. Chem. Thermodyn., 4:85 (1972).CrossRefGoogle Scholar
  25. 25.
    D. R. Massengill and R. C. Miller, J. Chem. Thermodyn., 5:201 (1973).CrossRefGoogle Scholar
  26. 26.
    A. G. Duncan and M. J. Hiza, in: Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (1970), p. 42.Google Scholar
  27. 27.
    R. Prydz and R. D. Goodwin, J. Chem. Thermodyn., 4:127 (1972).CrossRefGoogle Scholar
  28. 28.
    T. R. Strobridge, NBS Tech. Note No. 129 (1962).Google Scholar
  29. 29.
    L. A. Weber, J. Chem. Thermodyn., 2:839 (1970).CrossRefGoogle Scholar
  30. 30.
    A. G. Duncan and M. J. Hiza, Ind. Eng. Chem. Fund., 11(1): 38 (1972).CrossRefGoogle Scholar
  31. 31.
    M. L. McGlashan and D. J. B. Potter, Proc. Roy. Soc. (London), A267:478 (1962).Google Scholar
  32. 32.
    R. D. Goodwin, J. Res. NBS, 74A(5):655 (1970).CrossRefGoogle Scholar
  33. 33.
    R. D. Goodwin and R. Prydz, J. Res. NBS, 76A(2):81 (1972).CrossRefGoogle Scholar
  34. 34.
    J. S. Rowlinson, Liquids and Liquid Mixtures, Butterworth and Company, London (1969).Google Scholar
  35. 35.
    J. A. Barker, Austral. J. Chem., 6:270 (1953).Google Scholar
  36. 36.
    D. R. Massengill, M.S. Thesis, University of Wyoming, Laramie, Wyoming (1972).Google Scholar
  37. 37.
    N. S. Snider and T. M. Herrington, J. Chem. Phys., 47:2248 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • W. R. Parrish
    • 1
  • M. J. Hiza
    • 1
  1. 1.Cryogenics DivisionNBS Institute for Basic StandardsBoulderUSA

Personalised recommendations