Concerted Reactions

  • Francis A. Carey
  • Richard J. Sundberg


There are many reactions in organic chemistry that give no evidence of involving intermediates when they are subjected to the usual probes for studying reaction mechanisms. Highly polar transition states do not seem to be involved either, since the rates of the reactions are insensitive to solvent polarity. Efforts to detect free-radical intermediates by physical or chemical means have not been successful, and the reaction rates are neither increased by initiators nor decreased by inhibitors of free-radical reactions. This lack of evidence for intermediates leads to the conclusion that the reactions are single-step processes in which bond making and bond breaking both contribute to the structure at the transition state, although not necessarily to the same degree. Such processes are called concerted reactions. There are numerous examples ofboth unimolecular and bimolecular concerted reactions.


High Occupied Molecular Orbital Cycloaddition Reaction Orbital Symmetry Claisen Rearrangement Concerted Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.Google Scholar
  2. M.J.S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  3. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Interscience, New York, 1976.Google Scholar
  4. T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital Symmetry, Second Edition, Cambridge University Press, Cambridge, 1979.Google Scholar
  5. J. B. Hendrickson, Angew. Chem. Int. Ed. Engl. 13, 47 (1974).CrossRefGoogle Scholar
  6. W. C. Herndon, Chem. Rev. 72, 157 (1972).CrossRefGoogle Scholar
  7. K. N. Houk, Acc. Chem. Res. 11, 361 (1975).CrossRefGoogle Scholar
  8. R. E. Lehr and A. P. Marchand, Orbital Symmetry, A Problem-Solving Approach, Academic Press, New York, 1972.Google Scholar
  9. A. P. Marchand and R. E. Lehr, Pericyclic Reactions, Vols. I and II, Academic Press, New York, 1977.Google Scholar
  10. E. N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New York, 1980.Google Scholar
  11. S. J.Rhoads and N. R. Raulins, Org. React. 22, 1 (1974).Google Scholar
  12. L. Salem, Electrons in Chemical Reactions, Wiley, New York, 1982.Google Scholar
  13. R. B. Woodward and R. Hoffman, The Conservation of Orbital Symmetry, Academic Press, New York, 1970.Google Scholar
  14. H. E. Zimmerman, Acc. Chem. Res., 4, 272 (1971).CrossRefGoogle Scholar

References for Problems

  1. 2a.
    E. Vogel, Justus Liebigs Ann. Chem. 615, 14 (1958).CrossRefGoogle Scholar
  2. 2b.
    A. C. Cope, A. C. Haven, Jr., F. L. Ramp, and E. R. Turnbull,J. Am. Chem. Soc. 74, 4867 (1952).CrossRefGoogle Scholar
  3. 2c.
    R. Pettit,J. Am. Chem. Soc. 82, 1972 (1960).CrossRefGoogle Scholar
  4. 2d.
    M. Oda, M. Oda, and Y. Kitahara, Tetrahedron Lett., 839 (1976).Google Scholar
  5. 2e.
    K. M. Rapp and J. Daub, Tetrahedron Lett., 2011 (1976).Google Scholar
  6. 2f.
    E. J. Corey and D. K. Herron, Tetrahedron Lett., 1641 (1971).Google Scholar
  7. 3.
    A. G. Anastassiou, V. Orfanos, and J. H. Gebrian, Tetrahedron Lett., 4491 (1969);Google Scholar
  8. 3a.
    P. Radlick and G. Alford,J. Am. Chem. Soc. 91, 6529 (1969).CrossRefGoogle Scholar
  9. 4a.
    K. B. Wiberg, V. Z. Williams, Jr., and L. E. Friedrich,J. Am. Chem. Soc. 90, 5338 (1968).CrossRefGoogle Scholar
  10. 4b.
    P. S. Wharton and R. A. Kretchmer,J. Org. Chem. 33, 4258 (1968).CrossRefGoogle Scholar
  11. 4c.
    R. L. Danheiser, C. Martinez, and J. M. Morin,J. Org. Chem. 45, 1340 (1980); R. L. Danheiser, C. Martinez-Davilla, R. J. Auchus, and J. T. Kadonaga,J. Am. Chem. Soc. 103, 2443 (1981).CrossRefGoogle Scholar
  12. 4d.
    R. K. Hill and M. G. Bock,J. Am. Chem. Soc. 100, 637 (1978).CrossRefGoogle Scholar
  13. 4e.
    M. Newcomb and W. T. Ford,J. Am. Chem. Soc. 95, 7186 (1973).CrossRefGoogle Scholar
  14. 4f.
    R. K. Hill, C. B. Giberson, and J. V. Silverton,J. Am. Chem. Soc. 110, 497 (1988).CrossRefGoogle Scholar
  15. 5a.
    L. A. Paquette and M. Oku,J. Am. Chem. Soc. 96, 1219 (1974).CrossRefGoogle Scholar
  16. 5b.
    A. E. Hill, G. Greenwood, and H. M. R. Hoffmann,J. Am. Chem. Soc. 95, 1338 (1973).CrossRefGoogle Scholar
  17. 5c.
    S. W. Staley and T. J. Henry,J. Am. Chem. Soc. 93, 1292 (1971).CrossRefGoogle Scholar
  18. 5d.
    T. Kauffmann and E. Köppelmann, Angew. Chem. Int. Ed. Engl 11, 290 (1972).CrossRefGoogle Scholar
  19. 5e.
    C. W. Jefford, A. F. Böschung, and C. G. Rimbault, Tetrahedron Lett., 3387 (1974).Google Scholar
  20. 5f.
    M. F. Semelhack, H. N. Weiler, and J. S. Foos,J. Am. Chem. Soc. 99, 292 (1977).CrossRefGoogle Scholar
  21. 5g.
    R. K. Boeckman, Jr., M. H. Delton, T. Nagasaka, and T. Watanabe,J. Org. Chem. 42, 2946 (1977).CrossRefGoogle Scholar
  22. 5h.
    I. Hasan and F. W. Fowler,J. Am. Chem. Soc. 100, 6696 (1978).CrossRefGoogle Scholar
  23. 5i.
    R. Subramanyan, P. D. Bartlett, G. Y. M. Iglesias, W. H. Watson, and J. Galloy,J. Org. Chem. 47, 4491 (1982).CrossRefGoogle Scholar
  24. 6.
    A. Anastassiou and R. P. Cellura, J. Chem. Soc, Chem. Commun., 1521 (1969).Google Scholar
  25. 7a.
    L. A. Feiler, R. Huisgen, and P. Koppitz,J. Am. Chem. Soc. 96, 2270 (1974).CrossRefGoogle Scholar
  26. 7b.
    H. H. Wasserman, J. U. Piper, and E. V. Dehmlow,J. Org. Chem. 38, 1451 (1973).CrossRefGoogle Scholar
  27. 7c.
    D. A. Evans and A. M. Golob,J. Am. Chem. Soc. 97, 4765 (1975).CrossRefGoogle Scholar
  28. 7d.
    K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki,J. Am. Chem. Soc. 95, 2693 (1973).CrossRefGoogle Scholar
  29. 7e.
    N. Shimizu, M. Tanaka, and Y. Tsuno,J. Am. Chem. Soc. 104, 1330 (1982).CrossRefGoogle Scholar
  30. 7f.
    V. Cere, E. Dalcanale, C. Paolucci, S. Pollicino, E. Sandri, L. Lunazzi, and A. Fava,J. Org. Chem. 47, 3540 (1982).CrossRefGoogle Scholar
  31. 7g.
    L. A. Paquette and M. J. Wyvratt,J. Am. Chem. Soc. 96, 4671 (1974); D. McNeil, B. R. Vogt, J. J. Sudol, S. Theodoropulos, and E. Hedaya, J. Am. Chem. Soc. 96, 4673 (1974).CrossRefGoogle Scholar
  32. 7h.
    D. Bellus, H.-C. Mez, G. Rihs, and H. Sauter,J. Am. Chem. Soc. 96, 5007 (1974).CrossRefGoogle Scholar
  33. 7i.
    W. Grimme,J. Am. Chem. Soc. 95, 2381 (1973).CrossRefGoogle Scholar
  34. 7j.
    W. Weyler, Jr., L. R. Byrd, M. C. Caserio, and H. W. Moore,J. Am. Chem. Soc. 94, 1027 (1972).CrossRefGoogle Scholar
  35. 7k.
    M. Nakazaki, K. Naemura, H. Harada, and H. Narutaki,J. Org. Chem. 47, 3470 (1982).CrossRefGoogle Scholar
  36. 8.
    W. H. Rastetter and T. J. Richard,J. Am. Chem. Soc. 101, 3893 (1979).CrossRefGoogle Scholar
  37. 9.
    R. Huisgen and W. E. Konz,J. Am. Chem. Soc. 92, 4102 (1970).CrossRefGoogle Scholar
  38. 10.
    K. Maruyama, N. Nagai, and Y. Naruta,J. Org. Chem. 51, 5083 (1986).CrossRefGoogle Scholar
  39. 11.
    R. Subramanyam, P. D. Bartlett, G. Y. M. Iglesia, W. H. Watson, and J. Galloy,J. Org. Chem. 47, 4491 (1982).CrossRefGoogle Scholar
  40. 12a.
    L. A. Paquette and R. S. Beckley,J. Am. Chem. Soc. 97, 1084 (1975).CrossRefGoogle Scholar
  41. 12b.
    K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi,J. Am. Chem. Soc. 104, 5555 (1982).CrossRefGoogle Scholar
  42. 12c.
    B. M. Trost and A. J. Bridges,J. Am. Chem. Soc. 98, 5017 (1976).CrossRefGoogle Scholar
  43. 12d.
    K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi,J. Am. Chem. Soc. 104, 5555 (1982).CrossRefGoogle Scholar
  44. 12e.
    K. J. Shea and R. B. Phillips,J. Am. Chem. Soc. 100, 654 (1978).CrossRefGoogle Scholar
  45. 13.
    R. K. Hill, J. W. Morgan, R. V. Shetty, and M. E. Synerholm,J. Am. Chem. Soc. 96, 4201 (1974); H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 556 (1969).Google Scholar
  46. 14a.
    T. J. Brocksom and M. G. Constantino,J. Org. Chem. 47, 3450 (1982).CrossRefGoogle Scholar
  47. 14b.
    L. E. Overman, G. F. Taylor, K. N. Houk, and L. N. Domelsmith,J. Am. Chem. Soc. 100, 3182 (1978).CrossRefGoogle Scholar
  48. 14c.
    P. W. Tang and C A. Maggiulli,J. Org. Chem. 46, 3429 (1981).CrossRefGoogle Scholar
  49. 14d.
    R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. McLamore,J. Am. Chem. Soc. 74, 4223 (1952).CrossRefGoogle Scholar
  50. 14e.
    T. Cohen and Z. Kosarych,J. Org. Chem. 47, 4005 (1982).CrossRefGoogle Scholar
  51. 15.
    S. V. Ley and L. A. Paquette,J. Am. Chem. Soc. 96, 2887 (1974).CrossRefGoogle Scholar
  52. 16a.
    A. K. Cheng, F. A. L. Anet, J. Mioduski, and J. Meinwald,J. Am. Chem. Soc. 96, 2887 (1974).CrossRefGoogle Scholar
  53. 16b.
    J. S. McKennis, L. Brener, J. S. Ward, and R. Pettit,J. Am. Chem. Soc. 93, 4957 (1971).CrossRefGoogle Scholar
  54. 16c.
    W. Grimme, H. J. Riebel, and E. Vogel, Angew. Chem. Int. Ed. Engl. 7, 823 (1968).CrossRefGoogle Scholar
  55. 16d.
    W. Grimme,J. Am. Chem. Soc. 94, 2525 (1972).CrossRefGoogle Scholar
  56. 16e.
    J. J. Gajewski, L. K. Hoffman, and C. N. Shih,J. Am. Chem. Soc. 96, 3705 (1974).CrossRefGoogle Scholar
  57. 16f.
    D. P. Lutz and J. D. Roberts,J. Am. Chem. Soc. 83, 2198 (1961).CrossRefGoogle Scholar
  58. 17.
    A. Krantz,J. Am. Chem. Soc. 94, 4020 (1972).CrossRefGoogle Scholar
  59. 18.
    H.-D. Martin and E. Eisenmann, Tetrahedron Lett., 661 (1975).Google Scholar
  60. 19a.
    A. Viola and L. Levasseur,J. Am. Chem. Soc. 87, 1150 (1965).CrossRefGoogle Scholar
  61. 19b.
    S. F. Reed, Jr.,J. Org. Chem. 30, 1663 (1965).CrossRefGoogle Scholar
  62. 19c.
    T. S. Cantrell and H. Shechter,J. Am. Chem. Soc. 89, 5868 (1967).CrossRefGoogle Scholar
  63. 19d.
    R. B. Woodward, R. E. Lehr, and H. H. Inhoffen, Justus Liebigs Ann. Chem. 714, 57 (1968).CrossRefGoogle Scholar
  64. 19e.
    R. B. Woodward and T. J. Katz, Tetrahedron 5, 70 (1959).CrossRefGoogle Scholar
  65. 19f.
    N. J. Turro and W. B. Hammond, Tetrahedron 24, 6029 (1968).CrossRefGoogle Scholar
  66. 19g.
    J. S. McConaghy, Jr., and J. J. Bloomfield, Tetrahedron Lett., 3719 (1969).Google Scholar
  67. 19h.
    W. J. Linn and R. E. Benson,J. Am. Chem. Soc. 87, 3657 (1965).CrossRefGoogle Scholar
  68. 19i.
    J. K. Crandall and W. H. Machleder,J. Am. Chem. Soc. 90, 7292 (1968).CrossRefGoogle Scholar
  69. 19j.
    M. Jones, Jr., S. D. Reich, and L. T. Scott,J. Am. Chem. Soc. 92, 3118 (1970).CrossRefGoogle Scholar
  70. 19k.
    M. Jones, Jr., and B. Fairless, Tetrahedron Lett., 4881 (1968);Google Scholar
  71. 19ka.
    R. T. Seidner, N. Nakatsuka, and S. Masamune, Can. J. Chem. 48, 187 (1970).CrossRefGoogle Scholar
  72. 19l.
    P. G. Gassman, J. J. Roos, and S. J. Lee,J. Org. Chem. 49, 717 (1984).CrossRefGoogle Scholar
  73. 19m.
    Y. N. Gupta, M. J. Don, and K. N. Houk,J. Am. Chem. Soc. 104, 7336 (1982).CrossRefGoogle Scholar
  74. 19n.
    V. Glock, M. Wette, and F.-G. Klärner, Tetrahedron Lett. 26, 1441 (1985).CrossRefGoogle Scholar
  75. 19o.
    P. A. Zoretic, R. J. Chambers, G. D. Marbury, and A. A. Riebiro,J. Org. Chem. 50, 2981 (1985).CrossRefGoogle Scholar
  76. 19p.
    S. Sato, K. Tomita, H. Fujita, and Y. Sabo, Heterocycles 22, 1045 (1984).CrossRefGoogle Scholar
  77. 19q.
    M. Nakazaki, K. Naemura, H. Harada, and H. Narutaki,J. Org. Chem. 47, 3470 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations