Skip to main content

Fast Orthogonal Algorithms for Nonlinear System Identification and Time-Series Analysis

  • Chapter
Advanced Methods of Physiological System Modeling

Abstract

In this paper we consider methods of obtaining parsimonious models of physiological systems and of biological time-series data. For the application to system identification, our model takes the form of a nonlinear difference equation, whose significant terms are to be deter mined and whose coefficients estimated. The system may also be modelled by a functional expansion whose kernels (a constant, and one- and multidimensional weighting functions) are to be measured. For the application to time-series analysis, our model generally takes the form of a sinusoidal series, whose component frequencies need not be commensurate. However, we also consider series approximations using other functions, such as exponentials. For both system identification and time-series applications, we use orthogonal approaches (Korenberg, 1987, 1988) which include rapid searches for significant terms to incorporate into the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., 1974, A new look at the statistical model identification, IEEE Trans. AC-19: 716.

    MathSciNet  Google Scholar 

  • Billings, S.A., and Leontaritis, I.J., 1982, Parameter estimation tech niques for nonlinear systems, IFAC Symp. Ident. Sys. Param. Est., 1: 427.

    Google Scholar 

  • French, A.S., and Butz, E.G., 1973, Measuring the Wiener kernels of a nonlinear system using the fast Fourier transform algorithm, Int. J. Control, 17: 529.

    Article  MATH  Google Scholar 

  • Haber, R., and Keviczky, L., 1976, Identification of nonlinear dynamic systems, IFAC Symp. Ident. Sys. Param. Est., 1: 79.

    Google Scholar 

  • Ho, T., Kwok, J., Law, J., and Leung, L., 1987, “Nonlinear System Identification,”ELEC 490 Project Rept., Department of Electrical Engineering, Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  • Kay, S.M., and Marple, S.L., 1981, Spectrum analysis -a modern perspective, Proc. IEEE, 69: 1380.

    Article  Google Scholar 

  • Korenberg, M.J., 1985, Orthogonal identification of nonlinear difference equation models, Proc. Midwest Symp. Circuit. Sys., 1: 90.

    Google Scholar 

  • Korenberg, M.J., 1987, Fast orthogonal identification of nonlinear difference equation and functional expansion models, Proc. Midwest Symp. Circuit. Sys., 1: 270.

    Google Scholar 

  • Korenberg, M.J., 1988, Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm, Ann. Biomed. Eng., 16: 123.

    Article  Google Scholar 

  • Korenberg, M.J., Bruder, S.B., and Mcllroy, P.J., 1988, Exact orthogonal kernel estimation from finite data records: extending Wiener’s identification of nonlinear systems, Ann. Biomed. Eng., 16: 201.

    Article  Google Scholar 

  • Lee, Y.W., and Sehetzen, M., 1965, Measurement of the Wiener kernels of a nonlinear system by cross-correlation, Int. J. Control, 2: 237.

    Article  Google Scholar 

  • Marmarelis, P.Z., and Marmarelis, V.Z., 1978, “Analysis of Physiological Systems. The White Noise Approach”,Plenum Press, New York.

    Google Scholar 

  • Marmarelis, P.Z., and Naka, K.-I., 1972, White noise analysis of a neuron chain: an application of the Wiener theory, Science, 175: 1276.

    Article  Google Scholar 

  • Mcllroy, P.J.H., 1986, “Applications of nonlinear systems identification”,M. Sc. Thesis, Queen’s University, Kingston, Ontario, Canada.

    Google Scholar 

  • Mohanty, N.C., 1986, “Random Signals Estimation and Identification. Analysis and Applications”, Van Nostrand, New York.

    Book  Google Scholar 

  • Palm, G., and Poggio, T., 1977, The Volterra representation and the Wiener expansion: validity and pitfalls, SIAM J. Appl. Math., 33: 195.

    Article  MathSciNet  MATH  Google Scholar 

  • Palm, G., and Poggio, T., 1978, Stochastic identification methods for nonlinear systems: an extension of the Wiener theory, SIAM J. Appl. Math., 34: 524.

    Article  MathSciNet  MATH  Google Scholar 

  • Sakuranaga, M., Sato, S., Hida, E., and Naka, K.-I., 1986, Nonlinear analysis: mathematical theory and biological applications, CRC Crit. Rev. Biomed. Eng., 14: 127.

    Google Scholar 

  • Wiener, N., 1958, “Nonlinear Problems in Random Theory”, Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Korenberg, M.J. (1989). Fast Orthogonal Algorithms for Nonlinear System Identification and Time-Series Analysis. In: Marmarelis, V.Z. (eds) Advanced Methods of Physiological System Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9789-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9789-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9791-5

  • Online ISBN: 978-1-4613-9789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics