Skip to main content

Modeling of Neuronal Networks Through Experimental Decomposition

  • Chapter
Book cover Advanced Methods of Physiological System Modeling

Abstract

We recently have initiated a combined theoretical and experimental analysis of nonlinear system properties of the hippocampal formation (Berger et al., 1987, 1988a,b; Sclabassi et al., 1988a,b), a region of the mammalian brain which plays a major role in learning and memory functions (Squire, 1982; Thompson et al., 1983; Berger et al., 1986; Berger and Bassett, 1989). The hippocampal formation is composed of five subsystems: the entorhinal, dentate, hippocampal (CA3 and CA1 regions), and subicular cortices (Fig. 1). A single population of projection neurons provides the only output from each subsystem (Lorente de No, 1934), and is the source of monosynaptic, excit atory input to the projection neurons of other subsystems (Andersen et al., 1971b). The interconnectivity of the five cortical regions forms a closed feedback loop (Steward, 1976; Swanson and Cowan, 1977; Swanson et al., 1978; Sorensen and Shipley, 1979), such that activity within any one subsystem modulates activity of the other subsystems. Interneurons within each subsystem also modulate output of the projection neurons through local feedforward and feedback pathways (Lorente de No, 1934; Amaral, 1978; Alger and Nicoll, 1982; Lacaille et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, B. E. and Nicoll, R. A., 1982, Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J. Physiol., 328:105–123.

    Google Scholar 

  • Amaral, D. G., 1978, Golgi study of cell types in the hilar region of the hippocampus in the rat, J. Comp. Neurol.., 182:851–914.

    Article  Google Scholar 

  • Andersen, P., Bliss, T. V. P. and Skrede, K. K., 1971a, Unit analysis of hippocampal population spikes, Exp. Brain Res., 13:208–211.

    Google Scholar 

  • Andersen, P., Bliss, T. V. P. and Skrede, K. K., 1971b, Lamellar organiza tion of hippocampal excitatory pathways, Exp. Brain Res., 13:222–238.

    Google Scholar 

  • Andersen, P., Eccles, J. C. and Loyning, Y., 1964, Location of postsynaptic inhibitory synapses on hippocampal pyramids, J. Neurophysiol.., 27:592–607.

    Google Scholar 

  • Balzer, J. R., Sclabassi, R. J., and Berger, T. W., 1989, Effects of stimulation intensity on nonlinear response properties of hippocampal dentate granule cells to input from the medial perforant path, submitted.

    Google Scholar 

  • Berger, T. W. and Bassett, J. L., 1989, System properties of the hippocampus, in: “Learning and Memory: The Biological Substrates,”I. Gormezano, ed., Lawrence Erlbaum Associates, Hillsdale, NJ, in press.

    Google Scholar 

  • Berger, T. W., Berry, S. D. &Thompson, R. F., 1986, Role of the hippocampus in classical conditioning of aversive and appetitive behaviors, in: “The Hippocampus,”R. L. Isaacson and K. H. Pribram, eds., Plenum, New York.

    Google Scholar 

  • Berger, T. W., Eriksson, J. L., Ciarolla, D. A. and Sclabassi, R. J., 1988a, Nonlinear systems analysis of synaptic transmission in the hippocampal perforant path-dentate projection. II. Effects of random train stimulation, J. Neurophysiol.., 60:1077–1094.

    Google Scholar 

  • Berger, T. W., Eriksson, J. L., Ciarolla, D. A. and Sclabassi, R. J., 1988b, Nonlinear systems analysis of synaptic transmission in the hippocampal perforant path-dentate projection. III. Comparison of random train and paired impulse stimulation, J. Neurophvsiol.., 60:1095–1109.

    Google Scholar 

  • Berger, T. W., Robinson, G. B., Port, R. L. and Sclabassi, R. J., 1987,Nonlinear systems analysis of the functional properties of the hippo campal formation, in: “Advanced Methods of Physiological System Modeling,”V. Z. Marmarelis, ed., Biomedical Simulations Resource, Los Angeles.

    Google Scholar 

  • Berger, T. W., Semple-Rowland, S. and Bassett, J. L., 1981, Hippocampal polymorph neurons are the cells of origin for ipsilateral association and commissural afferents to the dentate gyrus, Brain Res.,215 329–336.

    Article  Google Scholar 

  • Buzsaki, G. and Eidelberg, E., 1981, Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition, Brain Res., 230:346–350.

    Article  Google Scholar 

  • Douglas, R. M., McNaughton, B. L. and Goddard, G. V., 1983, Commissural inhibition and facilitation of granule cell discharge in fascia dentata, J. Comp. Neurol.., 219:285–294.

    Article  Google Scholar 

  • Hjorth-Simonsen, A., 1977, Distribution of commissural afferents to the hippocampus of the rabbit, J. Comp. Neurol.., 176:495–514.

    Article  Google Scholar 

  • Krausz, H., 1975, Identification of nonlinear systems using random impulse train inputs, Biol .. Cyber., 19:217–230.

    Article  MATH  Google Scholar 

  • Laatsch, R. H., and Cowan, W. M., 1966, Electron microscopic studies of the dentate gyrus of the rat. I. Normal structure with special reference to synaptic organization, J. Comp. Neurol.., 128:359–396.

    Article  Google Scholar 

  • Lacaille, J., Mueller, A., Kunkel, D. and Schwartzkroin, P., 1987, Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology, J. Neurosci., 7:1979–1983.

    Google Scholar 

  • Lee, Y. W. and Schetzen, M., 1965, Measurement of the kernels of a non-linear system by cross-correlation, Internat. J. Control., 2:237–254.

    Article  Google Scholar 

  • Lomo, T., 1971, Patterns of activation in a monosynaptic cortical pathway: the perforant path input to the dentate area of the hippocampal formation, Exp. Brain Res., 12:18–45.

    Google Scholar 

  • Lorente de No, R., 1934, Studies on the structure of cerebral cortex. II. Continuation of the study of the ammonic system, J. Psychol. Neurol.., 46:113–177.

    Google Scholar 

  • Ogura, H., 1972, Orthogonal functionals of the poisson process, IEEE Trans. Inform. Theory. It-18:473–481.

    Article  MathSciNet  Google Scholar 

  • Ribak, C. E., and Seress, L., 1983, Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study, J. Neurocyt., 12:577–597.

    Article  Google Scholar 

  • Sclabassi, R. J., Eriksson, J. L., Port, R. L., Robinson, G. B., and Berger, T. W., 1988a, Nonlinear systems analysis of the hippocampal perforant path-dentate projection. I. Theoretical and interpretational considerations, J. Neurophvsiol.., 60:1066–1076.

    Google Scholar 

  • Sclabassi, R. J., Hinman, C. L., Kroin, J. S. and Risch, H. A., 1977, The modulatory effect of prior input upon afferent signals in the somatosensory system, Proc. Joint Auto. Control Conf., IEEE 12:787–795.

    Google Scholar 

  • Sclabassi, R. J., Krieger, D. N. and Berger, T. W., 1988b, A systems theoretic approach to the study of CNS function, Ann. Biomed. Eng., 16:17–34.

    Article  Google Scholar 

  • Sclabassi, R. J., Krieger, D. N., Solomon, J., Samosky, J., Levitan, S., and Berger, T., 1989, Modeling of neuronal networks through theoretical decomposition, in: “Advanced Methods of Physiological System Modeling,”V. Z. Marmarelis, ed., Plenum, New York, in press.

    Google Scholar 

  • Sclabassi, R. J. and Noreen, G. K., 1981, The characterization of dual-input evoked potentials as nonlinear systems using random impulse trains, Proc. Pitts. Mod. Simul .. Conf., 12:1123–1130.

    Google Scholar 

  • Skrede, K. K. and Westgaard, R. H., 1971, The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Research. 35:589–593.

    Article  Google Scholar 

  • Sorensen, K. E. and Shipley, M. T., 1979, Projections from the subiculum to the deep layers of the ipsilateral presubicular and entorhinal cortices in the guinea pig, J. Comp. Neurol.., 188:313–334.

    Article  Google Scholar 

  • Squire, L. R., 1982, The neuropsychology of human memory, Ann. Rev. Neurosci., 5:241–273.

    Article  Google Scholar 

  • Steward, O., 1976, Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat, J. Comp. Neurol., 167:285–314.

    Article  Google Scholar 

  • Struble, R. G., Desmond, N. L. and Levy, W. B., 1978, Anatomical evidence for interlamellar inhibition in the fascia dentata, Brain Res., 152: 580–585.

    Article  Google Scholar 

  • Swanson, L. W. and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol.., 172:49–84.

    Article  Google Scholar 

  • Swanson, L. W., Wyss, J. M. and Cowan, W. M., 1978, An autoradiographic study of the organization of intrahippocampal association pathways in the rat, J. Comp. Neurol., 181:681–716.

    Article  Google Scholar 

  • Thompson, R. F., Berger, T. W. and Madden, J., IV., 1983, Cellular processes of learning and memory in the mammalian CNS, Ann. Rev. Neurosci., 6: 447–491.

    Article  Google Scholar 

  • West, J. R., Deadwyler, S., Cotman, C. W., and Lynch, G., 1975, Timedependent changes in commissural field potentials in the dentate gyrus following lesions of the entorhinal cortex in adult rats, Brain Research, 97:215–233.

    Article  Google Scholar 

  • Wiener, N., 1958, “Nonlinear Problems in Random Theory,”Wiley Press, New York.

    MATH  Google Scholar 

  • Zimmer, J., 1971, Ipsilateral afferents to the commissural zone of the fascia dentata, demonstrated in decommissurated rats by silver impregnation, J. Comp. Neurol.., 142:393–416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Berger, T.W., Harty, T.P., Barrionuevo, G., Sclabassi, R.J. (1989). Modeling of Neuronal Networks Through Experimental Decomposition. In: Marmarelis, V.Z. (eds) Advanced Methods of Physiological System Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9789-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9789-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9791-5

  • Online ISBN: 978-1-4613-9789-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics