Skip to main content

Metal-Complex-Catalyzed Cleavage of Biopolymers

  • Chapter
Active Oxygen in Biochemistry

Abstract

Oxygen radical species such as the superoxide (O -2 ), hydroxyl (· OH), and hydroperoxyl (· OOH) radicals are well known for their deleterious effects in living systems. Their buildup leads to oxidative stress, initiating lipid peroxidation, protein oxidation, DNA damage, and other cellular disorders (Fontecave and Pierre, 1991; Halliwell and Aruoma, 1991; Stadtman and Oliver, 1991) (see also Chapter 7) . For example, site-specific generation of radicals plays a major role in carcinogenesis. The highly reactive · OH radicals act on DNA by abstracting H atoms from the deoxyribose sugar-phosphate backbone, causing strand scission and the release of bases and producing “alkali-labile” sites (strand breakage occurs on addition of base). Hydroxyl radicals can also add to DNA bases, forming radical adducts, which can undergo further chemical reactions. These changes to the DNA can lead to harmful mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A. W. (1979) Whither Inorganic Photochemistry? A Parochial View. Pure Appl. Chem., 51, 313–329.

    Google Scholar 

  • Ajmera, S., Wu, J. C., Worth, L., Rabow, L. E., Stubbe, J., and Kozarich, J. W. (1986) DNA Degradation by Bleomycin: Evidence for 2′R-proton Abstraction and for C-O Bond Cleavage Accompanying Base Propenal Formation. Biochemistry, 25, 6586–6592.

    Google Scholar 

  • Albertini, J.-P., and Garnier-Suillerot, A. (1982) Cobalt-Bleomycin-Deoxyribonucleic Acid System. Evidence of a Deoxyribonucleic Acid bound Superoxo and µ-Peroxo Cobalt-Bleomycin. Biochemistry, 21, 6777–6782.

    Google Scholar 

  • Albertini, J.-P., Garnier-Suillerot, A., and Tosi, L. (1982) Iron-Bleomycin · DNA · System-Evidence of a Long-lived Bleomycin · Iron · Oxygen Intermediate. Biochem. Biophys. Res. Commun., 104, 557–563.

    Google Scholar 

  • Balasubramanian, P. N., and Bruice, T. C. (1987) Oxygen Transfer Involving Non-heme Iron: The Influence of Leaving Group Ability on the Rate Constant for Oxygen Transfer to (EDTA)Fe(III) from Peroxycarboxylic Acids and Hydroperoxides. Proc. Natl. Acad. Sci. U. S.A., 84, 1734–1738.

    Google Scholar 

  • Barr, J. R., Van Atta, R. B., Natrajan, A., Hecht, S. M., Van Der Marel, G. A., and Van Boom, J. H. (1990) Iron(II)-bleomycin-mediated Reduction of O2 to Water: An 17O Nuclear Magnetic Resonance Study. J. Am. Chem. Soc. , 112, 4058–4060.

    Google Scholar 

  • Barton, J. K. (1985) Simple Coordination Complexes: Drugs and Probes for DNA Structure. Comments Inorg. Chem., 3, 321–348.

    Google Scholar 

  • Barton, J. K., Goldberg, J. M., Kumar, C. V., and Turro, N. J. (1986) Binding Modes and Base Specificity of tris-(Phenanthroline)ruthenium(II) Enantiomers with Nucleic Acids: Tuning the Stereoselectivity. J. Am. Chem. Soc., 108, 2081–2088.

    Google Scholar 

  • Bateman, R. C., Youngblood, W. W., Busby, W. H., and Kizer, J. S. (1985) Nonenzymatic Peptide α-Amidation. Implications for a Novel Enzyme Mechanism. J. Biol. Chem., 260, 9088–9091.

    Google Scholar 

  • Bowry, V. W., and Ingold, K. U. (1991) A Radical Clock Investigation of Microsomal Cytochrome P-450 Hydroxylation of Hydrocarbons. Rate of Oxygen Rebound. J. Am. Chem. Soc., 113, 5699–5707.

    Google Scholar 

  • Bray, W. G., and Gorin, M. (1932) Ferryl Ion, a Compound of Tetravalent Iron. J. Am. Chem. Soc., 54, 2124–2126.

    Google Scholar 

  • Brown, S. J., Hudson, S. E., and Mascharak, P. K. (1989a) Light-induced Nicking of DNA by a Synthetic Analogue of Cobalt(III)-bleomycin. J. Am. Chem. Soc., 111, 6446–6448.

    Google Scholar 

  • Brown, S. J., Hudson, S. E., Stephan, D. W., and Mascharak, P. K. (1989b) Syntheses, Structures, and Spectral Properties of a Synthetic Analogue of Copper(II)-bleomycin and an Intermediate in the Process of Its Formation. Inorg. Chem., 28, 468–477.

    Google Scholar 

  • Bruice, T. W., Wise, J. G., Rosser, D. S. E., and Sigman, D. S. (1991) Conversion of λ Phage Cro into an Operator-specific Nuclease. J. Am. Chem. Soc., 113, 5446–5447.

    Google Scholar 

  • Buettner, G. R., and Moseley, P. L. (1992) Ascorbate Both Activates and Inactivates Bleomycin by Free Radical Generation. Biochemistry, 31, 9784–9788.

    Google Scholar 

  • Bull, C., Mcclune, G. J., and Fee, J. A. (1983) The Mechanism of Fe-EDTA Catalyzed Superoxide Dismutation. J. Am. Chem. Soc., 105, 5290–5300.

    Google Scholar 

  • Burger, R. M., Blanchard, J. S., Horwitz,S. B., and Peisach, J. (1985) The Redox State of Activated Bleomycin. J. Biol. Chem., 260, 15406–15409.

    Google Scholar 

  • Burger, R. M., Freedman, J. H., Horwitz, S. B., and Peisach, J. (1984) DNA Degradation by Manganese(II)-bleomycin Plus Peroxide. Inorg. Chem., 23, 2215–2217.

    Google Scholar 

  • Burger, R. M., Horwitz, S. B., Peisach, J., and Wittenberg, J. B. (1979) Oxygenated Iron Bleomycin—a Short Lived Intermediate in the Reaction of Ferrous Bleomycin with O2. J. Biol. Chem., 254, 12299–12302.

    Google Scholar 

  • Burger, R. M., Kent, T. A., Horwitz, S. B., Münck, E., and Peisach, J. (1983) Mössbauer Study of Iron Bleomycin and Its Activation Intermediates. J. Biol. Chem., 258, 1559–1564.

    Google Scholar 

  • Burger, R. M., Peisach, J., and Horwitz, S. B. (1981) Activated Bleomycin—a Transient Complex of Drug, Iron, and Oxygen That Degrades DNA. J. Biol. Chem., 256, 11636–11644.

    Google Scholar 

  • Burger, R. M., Peisach, J., and Horwitz, S. B. (1982) Stoichiometry of DNA Strand Scission and Aldehyde Formation by Bleomycin. J. Biol. Chem. 257, 8612–8614.

    Google Scholar 

  • Burkhoff, A. M., and Tullius, T. D. (1987) The Unusual Conformation Adopted by the Adenine Tracts in Kinetoplast DNA. Cell, 48, 935–943.

    Google Scholar 

  • Burkhoff, A. M., and Tullius, T. D. (1988) Structural Details of an Adenine Tract that Does Not Cause DNA to Bend. Nature, 331, 455–457.

    Google Scholar 

  • Burkitt, M. J., and Gilbert, B. C. (1990) Model Studies of the Iron-catalysed Haber-Weiss Cycle and the Ascorbate-driven Fenton Reaction. Free Radical Res. Commun., 10, 265–280.

    Google Scholar 

  • Butler, A., and Carrano, C. J. (1991) Coordination Chemistry of Vanadium in Biological Systems. Coord. Chem. Rev. , 109, 61–105.

    Google Scholar 

  • Camerman, N., Camerman, A., and Sarkar, B. (1976) Molecular Design to Mimic the Copper(II) Transport Site of Human Albumin. The Crystal and Molecular Structure of Copper(II)-glycylglycyl-l-histidine-N-methylamide Monoaquo Complex. Can. J. Chem., 54, 1309–1316.

    Google Scholar 

  • Cantor, C. R., and Schimmel, P. R. (1980) in Biophysical Chemistry—Part I: The Conformation of Biological Macromolecules, W. H. Freeman, New York, p. 180.

    Google Scholar 

  • Carter, B. J., Murty, V. S., Reddy, K. S., Wang, S.-N., and Hecht, S. M. (1990) A Role for the Metal Binding Domain in Determining the DNA Sequence Selectivity of Fe-bleomycin. J. Biol. Chem., 265, 4193–4196.

    Google Scholar 

  • Carter, B. J., Reddy, K. S., and Hecht, S. M. (1991) Polynucleotide Recognition and Strand Scission by Fe-bleomycin. Tetrahedron, 47, 2463–2474.

    Google Scholar 

  • Cartwright, I. L., Hertzberg, R. P., Dervan, P. B., and Elgin, S. C. (1983) Cleavage of Chromatin with Methidiumpropyl-EDTA · iron(II). Proc. Natl. Acad. Sci. U.S.A., 80, 3213–3217.

    Google Scholar 

  • Celander, D. W., and Cech, T. R. (1990) Iron(II)-ethylenediaminetetraacetic Acid Catalyzed Cleavage of RNA and DNA Oligonucleotides: Similar Reactivity Toward Single- and Double-stranded Forms. Biochemistry, 29, 1355–1361.

    Google Scholar 

  • Chang, C.-H., Dallas, J. L., and Meares, C. F. (1983) Identification of a Key Structural Feature of Cobalt(III)-bleomycins: An Exogenous Ligand (e.g., Hydroperoxide) Bound to Cobalt. Biochem. Biophys. Res. Commun., 110, 959–966.

    Google Scholar 

  • Chang, C.-H., and Meares, C. F. (1982) Light-induced Nicking of Deoxyribonucleic Acid by Cobalt(III) Bleomycins. Biochemistry, 24, 6332–6334.

    Google Scholar 

  • Chang, C.-H., and Meares, C.F. (1984) Cobaltbleomycins and Deoxyribonucleic Acid: Sequence-dependent Interactions, Action Spectrum for Nicking, and Indifference to Oxygen. Biochemistry, 23, 2268–2274.

    Google Scholar 

  • Chen, C.-H. B., and Sigman, D. S. (1987) Chemical Conversion of a DNA-binding Protein Into a Site-specific Nuclease. Science, 237, 1197–1201.

    Google Scholar 

  • Chen, C.-H. B., and Sigman, D. S. (1988) Sequence-specific Scission of RNA by 1,10-Phenanthroline-copper Linked to Deoxyoligonucleotides. J. Am. Chem. Soc. 110, 6570–6572.

    Google Scholar 

  • Chen, J.-H., Churchill, M. E. A., Tullius, T.D., Kallenbach, N. R., and Seeman, N. C. (1988) Construction and Analysis of Monomobile DNA Junctions. Biochemistry, 27, 6032–6038.

    Google Scholar 

  • Chien, M., Grollman, A. P., and Horwitz, S. B. (1977) Bleomycin-DNA Interactions: Fluorescence and Proton Magnetic Resonance Studies. Biochemistry, 16, 3641–3646.

    Google Scholar 

  • Chikira, M., Antholine, W. E., and Petering, D. H. (1989) Orientation of Dioxygen Bound to Cobalt(II) Bleomycin-DNA Fibers. J. Biol. Chem., 264, 21478–21480.

    Google Scholar 

  • Chiou, S.-H. (1983) DNA- and Protein-scission Activities of Ascorbate in the Presence of Copper Ion and a Copper-Peptide Complex. J. Biochem. 94, 1259–1267.

    Google Scholar 

  • Chiou, S.-H. (1984) DNA-scission Activities of Ascorbate in the Presence of Metal Chelates. J. Biochem., 96, 1307–1310.

    Google Scholar 

  • Chow, C. S., and Barton, J. K. (1990) Shape-selective Cleavage of tRNAPhe by Transition-metal Complexes. J. Am. Chem. Soc., 112, 2839–2841.

    Google Scholar 

  • Chu, B. C. F., and Orgel, L. E. (1985) Nonenzymatic Sequence-specific Cleavage of Single-stranded DNA. Proc. Natl. Acad. Sci. U.S.A., 82, 963–967.

    Google Scholar 

  • Churchill, M. E. A., Hayes, J. J., Tullius, T. D. (1990) Detection of Drug Binding to DNA by Hydroxyl Radical Footprinting. Relationship of Distamycin Binding Sites to DNA Structure and Positioned Nucleosomes on 5S RNA Genes of Xenopus. Biochemistry, 29, 6043–6050.

    Google Scholar 

  • Churchill, M. E. A., Tullius, T. D., Kallenbach, N. R., and Seeman, N. C. (1988) A Holliday Recombination Intermediate Is Twofold Symmetric. Proc. Natl. Acad. Sci. U.S.A., 85, 4653–4656.

    Google Scholar 

  • Ciriolo, M. R., Peisach, J., and Magliozzo, R. S. (1989) A Comparative Study of the Interactions of Bleomycin with Nuclei and Purified DNA. J. Biol. Chem., 264, 1443–1449.

    Google Scholar 

  • Creutz, C. (1981) The Complexities of Ascorbate as a Reducing Agent (Corrected for pH and H+ Transfer). Inorg. Chem., 20, 4449–4452.

    Google Scholar 

  • Cuenoud, B., Tarasow, T. M., and Schepartz, A. (1992) A New Strategy for Directed Protein Cleavage. Tetrahedron Lett., 33, 895–898.

    Google Scholar 

  • D’Andrea, A. D., and Haseltine, W. A. (1978) Sequence Specific Cleavage of DNA by the Antitumor Antibiotics Neocarzinostatin and Bleomycin. Proc. Natl. Acad. Sci. U.S.A. 75, 3608–3612.

    Google Scholar 

  • D’Aurora, V., Stern, A. M., and Sigman, D. S. (1978) 1,10-PhenanthrolineCuprous Ion Complex, a Potent Inhibitor of DNA and RNA Polymerases. Biochem. Biophys. Res. Commun., 80, 1025–1032.

    Google Scholar 

  • Dervan, P. B. (1986) Design of Sequence-specific DNA-binding Molecules. Science, 232, 464–471.

    Google Scholar 

  • Dickerson, R. E. (1986) DNA-Drug Binding and Control of Genetic Information, in Mechanisms of DNA Damage and Repair (M. G. Simic, L. Grossman, and A. C. Upton, Eds.), Plenum Press, New York, pp. 245–255.

    Google Scholar 

  • Dizdaroglu, M., Aruoma, O. I., and Halliwell, B. (1990) Modification of Bases in DNA by Copper Ion-1,10-phenanthroline Complexes. Biochemistry, 29, 8447–8451.

    Google Scholar 

  • Drew, H. R., and Travers, A. A. (1984) DNA Structural Variations in the E. coli tyrT Promoter. Cell, 37, 491–502.

    Google Scholar 

  • Dreyer, G. B., and Dervan, P. B. (1985) Sequence-specific Cleavage of Single-stranded DNA: Oligodeoxynucleotide-EDTA · Fe(II). Proc. Natl. Acad. Sci. U.S.A., 82, 968–972.

    Google Scholar 

  • Ebright, Y. W., Chen, Y., Pendergrast, P. S., and Ebright, R. H. (1992) Incorporation of an EDTA-Metal Complex at a Rationally Selected Site Within a Protein: Application to EDTA-iron DNA Affinity Cleaving with Catabolite Gene Activator Protein (CAP) and Cro. Biochemistry, 31, 10664–10670.

    Google Scholar 

  • Ebright, R. H., Ebright, Y. W., Pendergrast, P. S., and Gunasekera, A. (1990) Conversion of a Helix-turn-helix Motif Sequence-specific DNA Binding Protein into a Site-specific DNA Cleavage Agent. Proc. Natl. Acad. Sci. U. S. A., 87, 2882 – 2886.

    Google Scholar 

  • Ehrenfeld, G. M., Murugesan, N., and Hecht, S. M. (1984) Activation of Oxygen and Mediation of DNA Degradation by Manganese-bleomycin. Inorg. Chem., 23, 1498–1500.

    Google Scholar 

  • Ehrenfeld, G. M., Rodriguez, L. O., and Hecht, S. M. (1985) Copper(I)-Bleomycin: Structurally Unique Complex That Mediates Oxidative DNA Strand Scission. Biochemistry, 24, 81–92.

    Google Scholar 

  • Ehrenfeld, G. M., Shipley, J. B., Heimbrook, D. C., Sugiyama, H., Long E. C., van Boom, J. H., van der Marel, G. A., Oppenheimer, N. J., and Hecht, S. M. (1987) Copper-dependent Cleavage of DNA by Bleomycin. Biochemistry, 26, 931–942.

    Google Scholar 

  • Eriksson, M., Leijon, M., Hiort, C., Norden, B., and Graslund, A. (1992) Minor Groove Binding of [Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Evidenced by Two-dimensional Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc., 114, 4933–4934.

    Google Scholar 

  • Ermacora, M. R., Delfino, J. M., Cuenoud, B., Schepartz, A., and Fox, R. O. (1992) Conformation-dependent Cleavage of Staphylococcal Nuclease with a Disulfide-linked Iron Chelate. Proc. Natl. Acad. Sci. U. S.A., 89, 6383–6387.

    Google Scholar 

  • Fenton, H. J. H. (1894) Oxidation of Tartaric Acid in the Presence of Iron. J. Chem. Soc., 65, 899–910.

    Google Scholar 

  • Fontecave, M., and Pierre, J. L. (1991) Activation et Toxicité de l’Oxygêne Principés des Therapeutiques Antioxydantes. Bull. Soc. Chim. Fr., 128, 505–520.

    Google Scholar 

  • Freedman, J. H., Horwitz, S. B., and Peisach, J. (1982) Reduction of Copper(II)-bleomycin: A Model for in vivo Drug Activity. Biochemistry, 21, 2203–2210.

    Google Scholar 

  • Fujii, S., Ohya-Nishiguchi, H., and Hirota, N. (1990) EPR Evidence of Intermediate Peroxo Complexes Formed in a SOD Model System. Inorg. Chim. Acta, 175, 27–30.

    Google Scholar 

  • Gajewski, E., Aruoma, O. I., Dizdaroglu, M., and Halliwell, B. (1991) Bleomycin-dependent Damage to the Bases in DNA Is a Minor Side Reaction. Biochemistry, 30, 2444–2448.

    Google Scholar 

  • Giloni, L., Takeshita, M., Johnson, F., Iden, C., and Grollman, A. P. (1981) Bleomycin-induced Strand-scission of DNA. J. Biol. Chem., 256, 8608–8615.

    Google Scholar 

  • Griffin, J. H., and Dervan, P. B. (1987a) Sequence-specific Chiral Recognition of Right-handed Double-helical DNA by (2S,3S)- and (2R,3R)-dihydroxybis(netropsin)succinamide. J. Am. Chem. Soc., 108, 5008–5009.

    Google Scholar 

  • Griffin, J. H., and Dervan, P. B. (1987b) Metalloregulation in the Sequence Specific Binding of Synthetic Molecules to DNA. J. Am. Chem. Soc., 109, 6840–6842.

    Google Scholar 

  • Graham, D. R., Marshall, L. E., Reich, K. A., and Sigman, D. S. (1980) Cleavage of DNA by Coordination Complexes. Superoxide Formation in the Oxidation of 1,10-Phenanthroline-Cuprous Complexes by Oxygen-Relevance to DNA-cleavage Reaction. J. Am. Chem. Soc., 102, 5419–5421.

    Google Scholar 

  • Grinstead, R. (1960a) The Oxidation of Ascorbic Acid by Hydrogen Peroxide. Catalysis by Ethylenediaminetetraacetato-iron(III). J. Am. Chem. Soc., 82, 3464–3471.

    Google Scholar 

  • Grinstead, R. (1960b) Oxidation of Salicylate by the Model Peroxidase Catalyst Iron-ethylenediaminetetraacetato-iron(III) Acid. J. Am. Chem. Soc., 3472–3476.

    Google Scholar 

  • Gupta, R. K., Feretti, J. A., and Caspary, W. J. (1979) Location of Iron in the Fe2+-Bleomycin Complex as Observed by 13C NMR Spectroscopy. Biochem. Biophys. Res. Commun., 89, 534–541.

    Google Scholar 

  • Gutteridge, J. M. C., West, M., Eneff, K., and Floyd, R. A. (1990) Bleomyciniron Damage to DNA with Formation of 8-Hydroxydeoxyguanosine and Base Propenals. Indications That Xanthine Oxidase Generates Superoxide from DNA Degradation Products. Free Radical Res. Commun., 10, 159–165.

    Google Scholar 

  • Halliwell, B., and Aruoma, O. I. (1991) DNA Damage by Oxygen-derived Species. Its Mechanism and Measurement in Mammalian Systems. Febs Lett, 281, 9–19.

    Google Scholar 

  • Hamamichi, N., Natrajan, A., and Hecht, S. M. (1992) On the Role of Individual Bleomycin Thiazoles in Oxygen Activation and DNA Cleavage. J. Am. Chem. Soc., 114, 6278–6291.

    Google Scholar 

  • Hecht, S. M. (1986) The Chemistry of Activated Bleomycin. Acc. Chem. Res., 19, 383–391.

    Google Scholar 

  • Heimbrook, D. C., Carr, M. A., Mentzer, M. A., Long, E. C., and Hecht, S. M. (1987) Mechanism of Oxygenation of cis-Stilbene by Iron Bleomycin. Inorg. Chem., 26, 3835–3836.

    Google Scholar 

  • Henichart, J.-P., Houssin, R., Bernier, J.-L., and Catteau, J.-P. (1982) Synthetic Model of a Bleomycin Metal Complex. J. Chem. Soc. Chem. Commun., 1295–1297.

    Google Scholar 

  • Hertzberg, R. P., and Dervan, P. B. (1982) Cleavage of Double Helical DNA by (Methidiumpropyl-EDTA)iron(II). J. Am. Chem. Soc., 104, 313–315.

    Google Scholar 

  • Hertzberg, R. P., and Dervan, P. B. (1984) Cleavage of DNA with Methidiumpropyl-EDTA-iron(II): Reaction Conditions and Product Analyses. Biochemistry, 23, 3934–3945.

    Google Scholar 

  • Hiort, C., Norden, B., and Rodger, A. (1990) Enantiopreferential DNA Binding of [RuII(1,10-phenanthroline)3]2+ Studied with Linear and Circular Dichroism. J. Am. Chem. Soc., 112, 1971–1982.

    Google Scholar 

  • Hoyer, D., Cho, H., and Schultz, P. G. (1990) A New Strategy for Selective Protein Cleavage. J. Am. Chem. Soc., 112, 3249–3250.

    Google Scholar 

  • Huttenhofer, A., and Noller, H. F. (1992) Hydroxyl Radical Cleavage of tRna in the Ribosomal P Site. Proc. Natl. Acad. Sci., U.S.A., 89, 7851–7855.

    Google Scholar 

  • Iitaka, Y., Nakamura, H., Nakatani, T., Muraoka, Y., Fujii, A., Takita, T., and Umezawa, H. (1978) Chemistry of Bleomycin XX. The X-ray Structure Determination of P-3A Cu(II)-complex, a Biosynthetic Intermediate of Bleomycin. J. Antibiot., 31, 1070–1072.

    Google Scholar 

  • Ishizu, K., Murata, S., Miyoshi, K., Suguira, Y., Takita, T., and Umezawa, H. (1981) Electrochemical and ESR Studies on Cu(II) Complexes of Bleomycin and Its Related Compounds. J. Antibiot., 34, 994–1000.

    Google Scholar 

  • James, B. R., and Williams, R. J. P. (1961) The Oxidation-reduction Potentials of Some Copper Complexes. J. Chem. Soc., 2007–2019.

    Google Scholar 

  • Jayco, M. E., and Garrison, W. W. (1958) Formation of >C=O Bonds in the Radiation-induced Oxidation of Protein in Aqueous Systems. Nature (London), 181, 413–414.

    Google Scholar 

  • Jezewska, M. J., Bujalowski, W., and Lohman, T. M. (1989) Iron(II)-ethylenediaminetetraacetic Acid Catalyzed Cleavage of DNA Is Highly Specific for Duplex DNA. Biochemistry, 28, 6161–6164.

    Google Scholar 

  • Johnson, A. G. R., and Nazhat, N. B. (1987) Kinetics and Mechanism of the Reaction of the bis(1,10-Phenanthroline)copper(I) Ion with Hydrogen Peroxide in Aqueous Solution. J. Am. Chem. Soc., 109, 1990–1994.

    Google Scholar 

  • Kahn, M. M. T., and Martell, A. E. (1967) Metal Ion and Metal Chelate Catalyzed Oxidation of Ascorbic Acid by Molecular Oxygen. II. Cupric and Ferric Chelate Catalyzed Oxidation. J. Am. Chem. Soc., 89, 7104–7111.

    Google Scholar 

  • Kasai, H., Naganawa, H., Takita, T., and Umezawa, H. (1978) Chemistry of Bleomycin. XXII. Interaction of Bleomycin with Nucleic Acids, Preferential Binding to Guanine Base and Electrostatic Effect of the Terminal Amine. J. Antibiot., 31, 1316–1320.

    Google Scholar 

  • Kean, J. M., White, S. A., and Draper, J. M. (1985) Detection of High-affinity Intercalator Sites in a Ribosomal RNA Fragment by the Affinity Cleavage Intercalator Methidiumpropyl-EDTA-iron(II). Biochemistry, 24, 5062–5070.

    Google Scholar 

  • Kenani, A., Bailly, C., Helbecque, N., Catteau, J-P., Houssin, R., Bernier, J-L., and Henichart, J-P. (1988) The Role of the Gulose-mannose Part of Bleomycin in Activation of Iron-Molecular Oxygen Complexes. Biochem. J., 253, 497–504.

    Google Scholar 

  • Kharasch, M. S., Fono, A., and Nudenberg, W. (1950) The Chemistry of Hydroperoxides. I. The Acid Catalyzed Decomposition of a,α-Dimethylbenzyl (α-Cumyl) Hydroperoxide. J. Org. Chem., 15, 748–752.

    Google Scholar 

  • Kilkuskie, R. E., Suguira, H., Yellin, B., Murugesan, N., and Hecht, S. M. (1985) Oxygen Transfer by Bleomycin Analogues Dysfunctional in DNA Cleavage. J. Am. Chem. Soc., 107, 260–261.

    Google Scholar 

  • Kim, K., Rhee, S. G., and Stadtman, E. R. (1985) Nonenzymatic Cleavage of Proteins by Reactive Oxygen Species Generated by Dithiothreitol and Iron. J. Biol Chem., 260, 15394–15397.

    Google Scholar 

  • Kittaka, A., Sugano, Y., Otsuka, M., and Ohno, M. (1988) Man-designed Bleomycins. Synthesis of Dioxygen Activating Molecules and a DNA Cleaving Molecule Based on Bleomycin-Fe(II)-O2 Complex. Tetrahedron, 44, 2821–2833.

    Google Scholar 

  • Kohda, K., Kasai, H., Ogawa, T., Suzuki, T., and Kawazoe, Y. (1989) Deoxyribonucleic Acid (DNA) Damage Induced by Bleomycin-Fe(II) in vitro: Formation of 8-Hydroxyguanine Residues in DNA. Chem. Pharm. Bull., 37, 1028–1030.

    Google Scholar 

  • Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P., and Dickerson, R. E. (1985) The Molecular Origin of DNA-Drug Specificity in Netropsin and Distamycin. Proc. Natl. Acad. Sci. U.S.A., 82, 1376–1380.

    Google Scholar 

  • Kozarich, J. W., Worth, L., Frank, B. L., Christner, D. F., Vanderwall, D. E., and Stubbe, J. (1989) Sequence-specific Isotope Effects on the Cleavage of DNA by Bleomycin. Science, 245, 1396–1898.

    Google Scholar 

  • Kross, J., Henner, D., Hecht, S. M., and Haseltine, W. A. (1982) Specificity of Deoxyribonucleic Acid Cleavage by Bleomycin, Phleomycin, and Tallysomycin. Biochemistry, 21, 4310–4318.

    Google Scholar 

  • Kuwabara, M., Yoon, C., Goyne, T., Thederahn, T., and Sigman, D. S. (1986) Nuclease Activity of 1,10-Phenanthroline-copper Ion: Reaction with CGCGAATTCGCG and Its Complexes with Netropsin and EcoRI. Biochemistry, 25, 7401–7408.

    Google Scholar 

  • Kuwahara, J., and Suguira, Y. (1988) Sequence-specific Recognition and Cleavage of DNA by Metallobleomycin: Minor Groove Binding and Possible Interaction Mode. Proc. Natl. Acad. Sci. U.S.A., 85, 2459–2463.

    Google Scholar 

  • Kuwahara, J., Suzuki, T., and Suguira, Y. (1985) Effective DNA Cleavage by Bleomycin—Vanadium(IV) Complex Plus Hydrogen Peroxide. Biochem. Biophys. Res. Commun., 129, 368–374.

    Google Scholar 

  • Latham, J. A., and Cech, T. R. (1989) Defining the Inside and Outside of a Catalytic RNA Molecule. Science, 245, 276–282.

    Google Scholar 

  • Levine, R. L. (1983) Oxidative Modification of Glutamine Synthetase. I. Inactivation Is Due to Loss of One Histidine Residue. J. Biol Chem., 258, 11823–11827.

    Google Scholar 

  • Lind, M. D., Hoard, J. L., Hamor, M. J., Hamor, T. A., and Hoard, J. L. (1964) Stereochemistry of Ethylenediaminetetraacetato Complexes. II. The Structure of Crystalline Rb[Fe(OH2Y] · H2O. III. The Structure of Crystalline Li[Fe(OH2)Y] · 2H2O. Inorg. Chem., 3, 34–43.

    Google Scholar 

  • Love, J. D., Liarakos, C. D., and Moses, R. E. (1981) Nonspecific Cleavage of ΦX174 RFI Deoxyribonucleaic Acid by Bleomycin. Biochemistry, 20, 5331–5336.

    Google Scholar 

  • Lown, J. W., and Sim, S. (1977) The Mechanism of the Bleomycin-induced Cleavage of DNA. Biochem. Biophys. Res. Commun., 77, 1150–1157.

    Google Scholar 

  • Mack, D. P., and Dervan, P. B. (1990) Nickel-mediated Sequence-specific Oxidative Cleavage of DNA by a Designed Metalloprotein. J. Am. Chem. Soc., 112, 4604–4606.

    Google Scholar 

  • Mack, D. P., Iverson, B. L., and Dervan, P. B. (1988) Design and Chemical Synthesis of a Sequence-specific DNA-cleaving Protein. J. Am. Chem. Soc., 110, 7572–7574.

    Google Scholar 

  • Mandon, D., Weiss, R., Franke, M., Bill, E., and Trautwein, A. X. (1989) Oxoiron Porphyrin Species with High-valent Iron: Formation by Solventdependent Protonation of a Peroxoiron(III) Porphyrinate Derivative. Angew. Chem., Int. Ed. Engl., 28, 1709–1711.

    Google Scholar 

  • Marshall, L. E., Graham, D. R., Reich, K. A., and Sigman, D. S. (1981) Cleavage of Deoxyribonucleic Acid by the 1,10-Phenanthroline-Cuprous Complex. Hydrogen Peroxide Requirement and Primary and Secondary Structure Specificity. Biochemistry, 20, 244–250.

    Google Scholar 

  • Mcgall, G. H., Rabow, L. E., Ashley, G. W., Wu, S. H., Kozarich, J. W., and Stubbe, J. (1992) New Insight into the Mechanism of Base Propenal Formation During Bleomycin-mediated DNA Degradation. J. Am. Chem. Soc., 114, 4958–4967.

    Google Scholar 

  • Mei, H-Y., and Barton, J. K. (1986) Chiral Probe for A-form Helices of DNA and RNA: tris(Tetramethylphenanthroline)ruthenium(II). J. Am. Chem. Soc., 108, 7414–7416.

    Google Scholar 

  • Mei, H-Y., and Barton, J. K. (1988) Tris(Tetramethylphenanthroline)ruthenium(II): A Chiral Probe That Cleaves A-DNA Conformations. Proc. Natl. Acad. Sci. U.S.A., 85, 1339–1343.

    Google Scholar 

  • Melnyk, D. L., Horwitz, S. B., and Peisach, J. (1981) Redox Potential of Iron-bleomycin. Biochemistry, 20, 5327–5331.

    Google Scholar 

  • Melnyk, D. L., Horwitz, S. B., and Peisach, J. (1987) The Oxidationreduction Potential of Copper-bleomycin. Inorg. Chim. Acta, 138, 75–78.

    Google Scholar 

  • Meunier, B. (1992) Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage. Chem. Rev., 92, 1411–1456.

    Google Scholar 

  • Moser, H. E., and Dervan, P. B. (1987) Sequence-specific Cleavage of Double Helical DNA by Triple Helix Formation. Science, 238, 645–650.

    Google Scholar 

  • Motomura, T., Araki, K., Kobayashi, K., Toi, H., and Aoyama, Y. (1992) Artificial Metallonuclease. CuII-promoted DNA Strand Scission as Effected by Bisresorcinol Derivatives Having a Metal-ion Binding Site. Chem. Lett., 963–966.

    Google Scholar 

  • Müller, W. E. G., Yamazaki, Z-I., Breter, H-J., and Zahn, R. K. (1972) Action of Bleomycin on DNA and RNA. Eur. J. Biochem., 31, 518–525.

    Google Scholar 

  • Murakawa, G. J., Chen, C-B., Kuwabara, M. D., Nierlich, D., and Sigman, D. S. (1989) Scission of RNA by the Chemical Nuclease of 1,10-Phenanthroline-copper Ion: Preference for Single-stranded Loops. Nucl. Acids. Res., 17, 5361–5375.

    Google Scholar 

  • Murugesan, N., and Hecht, S. M. (1985) Bleomycin as an Oxene Transferase. Catalytic Oxygen Transfer to Olefins. J. Am. Chem. Soc., 107, 493–500.

    Google Scholar 

  • Murugesan, N., Xu, C., Ehrenfeld, G. M., Sugiyama, H., Kilkuskie, R. E., Rodriguez, L. D., Chang, L.-H., and Hecht, S. M. (1985) Analysis of Products Formed During Bleomycin-mediated DNA Degradation. Biochemistry, 24, 5735–5744.

    Google Scholar 

  • Nagai, K., Suzuki, H., Tanaka, N., and Umezawa, H. (1969b) Decrease of Melting Temperature and Single Strand Scission of DNA by Bleomycin in the Presence of Hydrogen Peroxide. J. Antibiot. Ser. A, 22, 624–628.

    Google Scholar 

  • Nagai, K., Yamaki, H., Suzuki, H., Tanaka, N., and Umezawa, H. (1969a) The Combined Effects of Bleomycin and Sulfhydryl Compounds on the Thermal Denaturation of DNA. Biochem. Biophys. Acta, 179, 165–171.

    Google Scholar 

  • Nakamura, M., and Peisach, J. (1988) Self-inactivation of Fe(II)-bleomycin. J. Antibiot., 41, 638–647.

    Google Scholar 

  • Natrajan, A., Hecht, S. M., Van Der Marel, G. A., and Van Boom, J. H. (1990a) A Study of O2-versus H2O2-Supported Activation of Fe · bleomycin. J. Am. Chem. Soc., 112, 3997–4002.

    Google Scholar 

  • Natrajan, A., Hecht, S. M., Van Der Marel, G. A., and Van Boom, J. H. (1990b) Activation of Fe(III) · bleomycin by 10-Hydroperoxy-8,12-octa-decadienoic Acid. J. Am. Chem. Soc., 112, 4532–4538.

    Google Scholar 

  • Ogino, H., Takako, N., and Ogino, K. (1989) Redox Potentials and Related Thermodynamic Parameters of (Diamino Polycarboxylato)metal(III/II) Redox Couples. Inorg. Chem., 28, 3656–3659.

    Google Scholar 

  • Oppenheimer, N. J., Chang, C., Rodriguez, L. D., and Hecht, S. M. (1981) Copper(I) · Bleomycin—a Structurally Unique Oxidation-reduction Active Complex. J. Biol. Chem., 256, 1514–1517.

    Google Scholar 

  • Oppenheimer, N. J., Rodriguez, L. O., and Hecht, S. M. (1979) Structural Studies of “Active Complex” of Bleomycin: Assignment of Ligands to the Ferrous Ion in a Ferrous-Bleomycin-Carbon Monoxide Complex. Proc. Natl. Acad. Sci. U.S.A., 76, 5616–5620.

    Google Scholar 

  • Otsuka, M., Masuda, T., Haupt, A., Ohno, M., Shiraki, T., Suguira, Y., and Maeda, K. (1990) Man-designed Bleomycin with Altered Sequence Specificity in DNA Cleavage. J. Am. Chem. Soc., 112, 838–845.

    Google Scholar 

  • Owa, T., Sugiyama, T., Otsuka, M., and Ohno, M. (1990) A Model Study on the Mechanism of the Autooxidation of Bleomycin. Tetr. Lett., 31, 6063–6066.

    Google Scholar 

  • Padbury, G., and Sligar, S. G. (1986) Oxygen Activation by Bleomycin: Heteroatom Dealkylation. Fed. Proc., Fed. Am. Soc. Exp. Biol., 45, 1520.

    Google Scholar 

  • Padbury, G., Sligar, S. G., Labeque, R., and Marnett, L. J. (1988) Ferric Bleomycin Catalyzed Reduction of 10-Hydroperoxy-8,12-octadecadienoic Acid: Evidence for Homolytic O-O Bond Scission. Biochemistry, 27, 7846–7852.

    Google Scholar 

  • Petering, D. H., Byrnes, R. W., and Antholine, W. E. (1990) The Role of Redox-active Metals in the Mechanism of Action of Bleomycin. Chem.- Biol. Interact., 73, 133–182.

    Google Scholar 

  • Pope, L. M., Reich, K. A., Graham, D. R., and Sigman, D. S. (1982) Products of DNA Cleavage by the 1,10-Phenanthroline Copper Complex. Inhibitors of Escherichia coli DNA Polymerase I. J. Biol. Chem., 257, 12121–12128.

    Google Scholar 

  • Pope, L. M., and Sigman, D. S. (1984) Secondary Structure Specificity of the Nuclease Activity of the 1,10-Phenanthroline-Copper Complex. Proc. Natl. Acad. Sci. U.S.A., 81, 3–7.

    Google Scholar 

  • Povsic, T. J., and Dervan, P. B. (1989) Triple Helix Formation by Oligonucleotides on DNA Extended to the Physiological pH Range. J. Am. Chem. Soc., 111, 3059–3061.

    Google Scholar 

  • Pratviel, G., Bernadou, J., and Meunier, B. (1986) DNA Breaks Generated by the Bleomycin-Iron III Complex in the Presence of KHSO5, a Single Oxygen Donor. Biochem. Biophys. Res. Commun., 136, 1013–1020.

    Google Scholar 

  • Purmal, A. P., Skurlatov, Yu. I., and Travin, S. O. (1980) Formation of an Intermediate Oxygen Complex in the Autooxidation of Iron(II)-ethylenediaminetetraacetate. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 29, 315–320.

    Google Scholar 

  • Rabow, L. E., Stubbe, J., and Kozarich, J. W. (1990) Identification and Quantification of the Lesion Accompanying Base Release in Bleomycinmediated DNA Degradation. J. Am. Chem. Soc., 112, 3196–3203.

    Google Scholar 

  • Rabow, L., Stubbe, J., Kozarich, J. W., and Gerlt, J. A. (1986) Identification of the Alkaline-labile Product Accompanying Cytosine Release During Bleomycin-mediated Degradation of d(CGCGCG). J. Am. Chem. Soc., 108, 7130–7131.

    Google Scholar 

  • Rahhal, S., and Richter, H. W. (1988) Reduction of Hydrogen Peroxide by the Ferrous Iron Chelate of Diethylenetriamine-N,N,N′,N′,N″,N″-pentaacetate. J. Am. Chem. Soc., 110, 3126–3133 (see ref. within).

    Google Scholar 

  • Rana, T. R., and Meares, C. F. (1990) Specific Cleavage of a Protein by an Attached Iron Chelate. J. Am. Chem. Soc., 112, 2457–2458.

    Google Scholar 

  • Rana, T. R., and Meares, C. F. (1991a) Iron Chelate Mediated Proteolysis: Protein Structure Dependence. J. Am. Chem. Soc., 113, 1859–1861.

    Google Scholar 

  • Rana, T. R., and Meares, C. F. (1991b) Transfer of Oxygen from an Artificial Protease to Peptide Carbon During Proteolysis. Proc. Natl. Acad. Sci. U.S.A., 88, 10578–10582.

    Google Scholar 

  • Rehmann, J. P., and Barton, J. K. (1990) 1H NMR Studies of tris-(Phenanthroline) Metal Complexes Bound to Oligonucleotides: Characterization of Binding Modes. Biochemistry, 29, 1701–1709.

    Google Scholar 

  • Rush, J. D., and Koppenol, W. H. (1986) Oxidizing Intermediates in the Reaction of Ferrous EDTA with Hydrogen Peroxide. J. Biol. Chem., 261, 6730–6733.

    Google Scholar 

  • Rush, J. D., Maskos, Z., and Koppenol, W. H. (1990) Distinction Between Hydroxyl Radical and Ferryl Species. Meth. Enzymol., 186, 148–156.

    Google Scholar 

  • Saito, I., Morii, T., Sugiyama, H., Matsuura, T., Meares, C. F., and Hecht, S. M. (1989) Photoinduced DNA Strand Scission by Cobalt Bleomycin Green Complex. J. Am. Chem. Soc., 111, 2307–2308.

    Google Scholar 

  • Satyanarayana, S., Dabrowiak, J. C., and Chaires, J. B. (1992) Neither Delta- nor Lambda-tris(phenanthroline)ruthenium(II) Binds to DNA by Classicial Intercalation. Biochemistry, 31, 9319–9324.

    Google Scholar 

  • Sausville, E. A., Peisach, J., and Horwitz, S. B. (1976) A Role for Ferrous Ion and Oxygen in the Degradation of DNA by Bleomycin. Biochem. Biophys. Res. Commun., 73, 814–822.

    Google Scholar 

  • Sausville, E. A., Peisach, J., and Horwitz, S. B. (1978a) Effect of Chelating Agents and Metal Ions on the Degradation of DNA by Bleomycin. Biochemistry, 17, 2740–2746.

    Google Scholar 

  • Sausville, E. A., Stein, R. A., Peisach, J., and Horwitz, S. B. (1978b) Properties and Products of the Degradation of DNA by Bleomycin and Iron(II). Biochemistry, 17, 2746–2754.

    Google Scholar 

  • Sawyer, D. T. (1991) Oxygen Chemistry—International Series of Monographs on Chemistry 26, Oxford University Press, New York, pp. 44, 172.

    Google Scholar 

  • Schepartz, A., and Cuenoud, B. (1990) Site-specific Cleavage of the Protein Calmodulin Using a Trifluorperazine-based Affinity Reagent. J. Am. Chem. Soc., 112, 3247–3249.

    Google Scholar 

  • Schultz, P. G., and Dervan, P. B. (1983) Sequence-specific Double-strand Cleavage of DNA by bis(EDTA-distamycin · FeII) and EDTA-bis(distamycin · FeII). J. Am. Chem. Soc., 105, 7748–7750.

    Google Scholar 

  • Schultz, P. G., Taylor, J. S., and Dervan, P. B. (1982) Design and Synthesis of a Sequence-specific DNA Cleaving Molecule (Distamycin-EDTA)iron(II). J. Am. Chem. Soc., 104,6861–6863.

    Google Scholar 

  • Shafer, G. E., Price, M. A., and Tullius, T. D. (1989) Use of the Hydroxyl Radical and Gel Electrophoresis to Study DNA Structure. Electrophoresis, 10, 397–404.

    Google Scholar 

  • Sheldon, R. A., and Kochi, J. K. (1976) Metal-catalyzed Oxidations of Organic Compounds in the Liquid Phase: A Mechanistic Approach, in Advances in Catalysis (D. D. Eley, H. Pines, and P. B. Weisz, eds.), Academic Press, New York, 25, pp. 272–413.

    Google Scholar 

  • Shepherd, R. E., Lomis, T. J., and Koepsel, R. R. (1992) A Ferryl(V) Pathway in DNA Cleavage Induced by FeII(haph) with O2 or H2O2. J. Chem. Soc. Chem. Commun., 222–224.

    Google Scholar 

  • Shields, H., and Mcglumphy, C. (1984) The Orientation of the Ligands in Iron(III)-bleomycin Intercalated with DNA. Biochim. Biophys. Acta, 800, 277–281.

    Google Scholar 

  • Shields, H., Mcglumphy, C, and Hamrick, P. J. (1982) The Conformation and Orientation of Copper(II) Bleomycin Intercalated with DNA. Biochim. Biophys. Acta, 697, 113–120.

    Google Scholar 

  • Shirakawa, I., Azegami, M., Ishii, S.-I., and Umezawa, H. (1971) Reaction of Bleomycin with DNA Strand Scission of DNA in the Absence of Sulfhydryl or Peroxide Compounds. J. Antibiot. Ser. A, 24, 761–766.

    Google Scholar 

  • Sigman, D. S. (1986) Nuclease Activity of 1,10-Phenanthroline-copper Ion. Acc. Chem. Res., 19, 180 – 186.

    Google Scholar 

  • Sigman, D. S. (1990) Chemical Nucleases. Biochemistry, 29, 9097–9105.

    Google Scholar 

  • Sigman, D. S., Graham, D. R., D’Aurora, V., and Stern, A. M. (1979) Oxygen-dependent Cleavage of DNA of the 1,10-Phenanthroline · Cuprous Complex—Inhibition of Escherichia coli DNA Polymerase I. J. Biol. Chem., 254, 12269 – 12272.

    Google Scholar 

  • Singleton, S. F., and Dervan, P. B. (1992) Thermodynamics of Oligodeoxyribonucleotide-directed Triple Helix Formation: An Analysis Using Quantitative Affinity Cleavage Titration. J. Am. Chem. Soc., 114, 6957–6965.

    Google Scholar 

  • Sluka, J. P., Horvath, S. J., Bruist, M. F., Simon, M. I., and Dervan, P. B. (1987) Synthesis of a Sequence-specific DNA-cleaving Peptide. Science, 238, 1129 – 1132.

    Google Scholar 

  • Spassky, A., and Sigman, D. S. (1985) Nuclease Activity of 1,10-Phenanthroline-copper Ion. Conformational Analysis and Footprinting of the Lac Operon. Biochemistry, 24, 8050–8056.

    Google Scholar 

  • Stadtman, E. R., and Berlett, B. S. (1991b) Fenton Chemistry. Amino Acid Oxidation. J. Biol. Chem. 266, 17201–17211.

    Google Scholar 

  • Stadtman, E. R., and Oliver, C. N. (1991) Metal-catalyzed Oxidation of Proteins. Physiological Consequences. J. Biol. Chem., 266, 2005–2008.

    Google Scholar 

  • Stubbe, J., and Kozarich, J. W. (1987) Mechanisms of Bleomycin-induced DNA Degradation. Chem. Rev., 87, 1007–1136.

    Google Scholar 

  • Subramanian, R., and Meares, C. F. (1985) Photo-induced Nicking of Deoxyribonucleic Acid by Ruthenium(II)-bleomycin in the Presence of Air. Biochem. Biophys. Res. Commun., 133, 1145–1151.

    Google Scholar 

  • Subramanian, R., and Meares, C. F. (1986) Photosensitization of Cobalt Bleomycin. J. Am. Chem. Soc., 108, 6427–6429.

    Google Scholar 

  • Suggs, J. W., and Wagner, R. W. (1986) Nuclease Recognition of an Alternating Structure in a d(AT)14 Plasmid Insert. Nucleic Acids Res., 14, 3703–3716.

    Google Scholar 

  • Sugiyama, H., Kilkuskie, R. E., Chang, L-H., Ma, L-T., and Hecht, S. M. (1986) DNA Strand Scission by Bleomycin: Catalytic Cleavage and Strand Selectivity. J. Am. Chem. Soc., 108, 3852–3854.

    Google Scholar 

  • Sugiyama, H., Sera, T., Dannoue, Y., Marumoto, R., and Saito, I. (1991) Bleomycin-mediated Degradation of Aristeromycin-containing DNA. Novel Dehydrogenation Activity of Iron(II)-bleomycin. J. Am. Chem. Soc., 113, 2290–2295.

    Google Scholar 

  • Sugiyama, H., Xu, C., Murugesan, N., and Hecht, S. M. (1985) Structure of the Alkali-labile Product Formed During Iron(II)-bleomycin-mediated DNA Strand Scission. J. Am. Chem. Soc., 107, 4104–4105.

    Google Scholar 

  • Suguira, Y. (1979b) The Production of Hydroxyl Radical from Copper(I) Complex Systems of Bleomycin and Tallysomycin: Comparison with Copper(II) and Iron(II) Systems. Biochem. Biophys. Res. Commun., 90, 375–383

    Google Scholar 

  • Sugiura, Y. (1980a) Bleomycin—Iron Complexes. Electron Spin Resonance Study, Ligand Effect, and Implication for Action Mechanism. J. Am. Chem. Soc., 102, 5208–5215.

    Google Scholar 

  • Suguira, Y. (1980b) Monomeric Cobalt(II)-oxygen Adducts of Bleomycin Antibiotics in Aqueous Solution. A New Ligand Type of Oxygen Binding and Effect of Axial Lewis Base. J. Am. Chem. Soc., 102, 5216–5221.

    Google Scholar 

  • Suguira, Y., Ishizu, K., and Miyoshi, K. (1979a) Studies of Metallobleomycins by Electronic Spectroscopy, Electron Spin Resonance Spectroscopy, and Potentiometric Titration. J. Antibiot., 32, 453–461.

    Google Scholar 

  • Suguira, Y., Suzuki, T., Kuwahara, J., and Tanaka, H. (1982a) On the Mechanism of Hydrogen Peroxide-, Superoxide-, and Ultraviolet Lightinduced DNA Cleavages of Inactive Bleomycin-Iron(III) Complex. Biochem. Biophys. Res. Commun., 105, 1511–1518.

    Google Scholar 

  • Sugiura, Y., Suzuki, T., and Tanaka, H. (1982b) Some Properties, Oxygen Activation, and DNA Cleavage of Iron Complexes of Bleomycin and Its Synthetic Analog, in Oxygenases and Oxygen Metabolism (M. Nozaki), Ed., Academic Press, New York, pp. 511–519.

    Google Scholar 

  • Sun, J. S., François, J-C., Lavery, R., Saison-Behmoaras, T., Montenaygarestier, T., Nguyen, T. T., and Hélène, C. (1988) Sequence-targeted Cleavage of Nucleic Acids by Oligo-alpha-thymidylate-phenanthroline Conjugates: Parallel and Antiparallel Double Helices Are Formed with DNA and RNA, Respectively. Biochemistry, 27, 6039–6045.

    Google Scholar 

  • Suzuki, T., Kuwahara, J., Goto, M., and Suguira, Y. (1985) Nucleotide Sequence Cleavages of Manganese-bleomycin Induced by Reductant, Hydrogen Peroxide and Ultraviolet Light. Comparison with Iron- and Cobalt-bleomycins. Biochim. Biophys. Acta, 824, 330–335.

    Google Scholar 

  • Suzuki, T., Kuwahara, J., and Suguira, Y. (1984) DNA Cleavages of Bleomycin-Transition Metal Complexes Induced by Reductant, Hydrogen Peroxide, and Ultraviolet Light: Characteristics and Biological Implication. Nucleic Acids Res. Symp Ser. No. 15, 161–164.

    Google Scholar 

  • Tabor, S., and Richardson, C. C. (1987) Selective Oxidation of the Exonuclease Domain of Bacteriophage T7 DNA Polymerase. J. Biol Chem., 262, 15330–15333.

    Google Scholar 

  • Takahashi, K., Yoshioka, O., Matsuda, A., and Umezawa, H. (1977) Intracellular Reduction of the Cupric Ion of Bleomycin Copper Complex and Transfer of the Cuprous Ion to a Cellular Protein. J. Antibiot., 30, 861–869.

    Google Scholar 

  • Takeshita, M., Grollman, A. P., Ohtsubo, E., and Ohtsubo, H. (1978) Interaction of Bleomycin with DNA. Proc. Natl. Acad. Sci. U.S.A., 75, 5983–5987.

    Google Scholar 

  • Takita, T., Muraoka, Y., Nakatani, T., Fujii, A., Iitaka, Y., and Umezawa, H. (1978a) Chemistry of Bleomycin. XXI Metal-complex of Bleomycin and its Implication for the Mechanism of Bleomycin Action. J. Antibiot., 31, 1073–1077.

    Google Scholar 

  • Takita, T., Muraoka, Y., Nakatani, T., Fujii, A., Umezawa, Y., Naganawa, H., and Umezawa, H. (1978b) Chemistry of Bleomycin. XIX. Revised Structures of Bleomycin and Phleomycin. J. Antibiot., 31, 801–804.

    Google Scholar 

  • Tan, J. D., Hudson, S. E., Brown, S. J., Olmstead, M. M., and Mascharak, P. K. (1992) Syntheses, Structures, and Reactivities of Synthetic Analogues of the Three Forms of Co(III)-bleomycin: Proposed Mode of Light-induced DNA Damage by the Co(III) Chelate of the Drug. J. Am. Chem. Soc., 114, 3841–3853.

    Google Scholar 

  • Tanner, K., and Cech, T. R. (1985) Self-catalyzed Cyclization of the Intervening Sequence RNA of Tetrahymena: Inhibition by Methidiumpropyl · EDTA and Localization of the Major Dye Binding Sites. Nucl. Acids Res., 13, 7759–7779.

    Google Scholar 

  • Taylor, J. S., Schultz, P. G., and Dervan, P. B. (1984) DNA Affinity Cleaving. Sequence Specific Cleavage of DNA by Distamycin-EDTA · Fe(II) and EDTA-distamycin · Fe(II). Tetrahedron, 40, 457–465.

    Google Scholar 

  • Thederahn, T., Spassky, A., Kuwabara, M. D., and Sigman, D. S. (1990) Chemical Nuclease Activity of 5-Phenyl-1,10-phenanthroline-copper Ion Detects Intermediates in Transcription Initiation by E. coli RNA Polymerase. Biochem. Biophys. Res. Commun., 168, 756–762.

    Google Scholar 

  • Tullius, T. D. (1991) DNA Footprinting with the Hydroxyl Radical. Free Radical Res. Commun., 12–13, 521–529.

    Google Scholar 

  • Tullius, T. D., and Dombroski, B. A.4 (1985) Iron(II) EDTA Used to Measure the Helical Twist Along Any DNA Molecule. Science, 230, 679–681.

    Google Scholar 

  • Tullius, T. D., and Dombroski, B. A. (1986) Hydroxyl Radical”Footprinting”: High-resolution Information About DNA-Protein Contacts and Application to λ Repressor and Cro Protein. Proc. Natl. Acad. Sci. U.S.A., 83, 5469 – 5473.

    Google Scholar 

  • Tullius, T. D., Dombroski, B. A., Churchill, M. E. A., and Kam, L. (1987) Hydroxyl Radical Footprinting; A High-resolution Method for Mapping Protein-DNA Contacts. Meth. Enzymol., 155, 537–559.

    Google Scholar 

  • Udenfriend, S., Clark, C. T., Axelrod, J., and Brodie, J. J. (1954) Ascorbic Acid in Aromatic Hydroxylation. I. A Model System for Aromatic Hydroxylation. J. Biol. Chem., 208, 731–739.

    Google Scholar 

  • Umezawa, H., Maeda, K., Takeuchi, T., and Okami, Y. (1966) New Antibiotics, Bleomycin A and B. J. Antibiot., Ser. A., 19, 200–209.

    Google Scholar 

  • Umezawa, H., Takita, T., Suguira, Y., Otsuka, M., Kobayashi, S., and Ohno, M. (1984) DNA-Bleomycin Interaction. Nucleotide Sequencespecific Binding and Cleavage of DNA by Bleomycin. Tetrahedron, 40, 501–509.

    Google Scholar 

  • Van Dyke, M. W., and Dervan, P. B. (1983a) Chromomycin, Mithramycin, and Olivomycin Binding Sites on Heterogeneous Deoxyribonucleic Acid. Footprinting with (Methidiumpropyl-EDTA)iron(II). Biochemistry, 22, 2373–2377.

    Google Scholar 

  • Van Dyke, M. W., and Dervan, P. B. (1983b) Methidiumpropyl-EDTA · Fe(II) and DNase I Footprinting Report Different Small Molecule Binding Site Sizes on DNA. Nucl. Acids Res., 11, 5555–5567.

    Google Scholar 

  • Van Dyke, M. W., Hertzberg, R. P., and Dervan, P. B. (1982) Map of Distamycin, Netropsin, and Actinomycin Binding Sites on Heterogeneous DNA: DNA Cleavage Inhibition Patterns with Methidiumpropyl-EDTA · Fe(II). Proc. Natl. Acad. Sci. U.S.A., 79, 5470–5474.

    Google Scholar 

  • Vary, C. P. H., and Vournakis, J. N. (1984) RNA Structure Analysis Using Methidiumpropyl-EDTA · Fe(II): A Base-pair-specific RNA Structure Probe. Proc. Natl. Acad. Sci. U.S.A., 81, 6978–6982.

    Google Scholar 

  • Vos, C. M., Westera, G., and Zanten, B. (1980) Different Forms of the Cobalt-Bleomycin A2 Complex. J. Inorg. Biochem., 12, 45–55.

    Google Scholar 

  • Walling, C. (1975) Fenton’s Reagent Revisited. Accs. Chem. Res., 8, 125–131.

    Google Scholar 

  • Williams, L. D., Thivierge, J., and Goldberg, I. H. (1988) Specific Binding of o-Phenanthroline at a DNA Structural Lesion. Nucleic Acids Res., 16, 11607–11615.

    Google Scholar 

  • Winterbourn, C. C. (1987) The Ability of Scavengers to Distinguish Hydroxyl Radical Production in the Iron-catalyzed Haber-Weiss Reaction: Comparison of Four Assays for Hydroxyl Radical. Free Radical Biol. Med., 3, 33–39.

    Google Scholar 

  • Wu, J. C., and Kozarick, J. W. (1985) Mechanism of Bleomycin: Evidence for a Rate-determining 4′-Hydrogen Abstraction from Poly (dA-dU) Associated with the Formation of Both Free Base and Base Propenal. Biochemistry, 24, 7562–7568.

    Google Scholar 

  • Wu, J. C., Kozarich, J. W., and Stubbe, J. (1983) The Mechanism of Free Base Formation From DNA by Bleomycin. J. Biol. Chem., 258, 4694–4697.

    Google Scholar 

  • Wu, Y., Houk, K. N., Valentine, J. S., and Nam, W. (1992) Is Intramolecular Hydrogen-bonding Important for Bleomycin Reactivity? A Molecular Mechanics Study. Inorg. Chem., 31, 720–722.

    Google Scholar 

  • Xu, R. S., Antholine, W. E., and Petering, D. H. (1992a) Reaction of Co(II)bleomycin with Dioxygen. J. Biol. Chem., 267, 944–949.

    Google Scholar 

  • Xu, R. S., Antholine, W. E., and Petering, D. H. (1992b) Reaction of DNA-bound Co(II)bleomycin with Dioxygen. J. Biol. Chem., 267, 950–955.

    Google Scholar 

  • Yamaguchi, K., Watanabe, Y., and Morishima, I. (1992) Push Effect on the Heterolytic O-O Bond Cleavage of Peroxoiron(III) Porphyrin Adducts. Inorg. Chem., 31, 156–157.

    Google Scholar 

  • Yamazaki, I., and Piette, L. H. (1990) Esr Spin-trapping Studies on the Reaction of Fe2+ Ions with H2O2-reactive Species in Oxygen Toxicity in Biology. J. Biol. Chem., 265, 13589–13594.

    Google Scholar 

  • Yoon, C., Kuwabara, M. D., Spassky, A., and Sigman, D. S. (1990) Sequence Specificity of the Deoxyribonuclease Activity of 1,10-Phenanthroline-copper Ion. Biochemistry, 29, 2116–2121.

    Google Scholar 

  • Youngquist, R. S., and Dervan, P. B. (1985a) Sequence-specific Recognition of B-DNA by Oligo(N-methylpyrrolecarboxamide)s. Proc. Natl. Acad. Sci. U.S.A., 82, 2565–2569.

    Google Scholar 

  • Youngquist, R. S., and Dervan, P. B. (1985b) Sequence-specific Recognition of B DNA by bis(EDTA-distamycin)fumaramide. J. Am. Chem. Soc., 107, 5528–5529.

    Google Scholar 

  • Youngquist, R. S., and Dervan, P. B. (1987) A Synthetic Peptide Binds 16 Base Pairs of A,T Double Helical DNA. J. Am. Chem. Soc., 109, 7564–7566.

    Google Scholar 

  • Zang, V., and Van Eldik, R. (1990) Kinetics and Mechanism of the Autooxidation of Iron(II) Induced Through Chelation by Ethylenediaminetetraacetate and Related Ligands. Inorg. Chem., 29, 1705–1711.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marusak, R.A., Meares, C.F. (1995). Metal-Complex-Catalyzed Cleavage of Biopolymers. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9783-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9783-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9785-4

  • Online ISBN: 978-1-4613-9783-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics