Skip to main content

Biological Reactions of Dioxygen: An Introduction

  • Chapter
Book cover Active Oxygen in Biochemistry

Abstract

Life on earth originated during a time when the atmosphere contained little or no gaseous oxygen. Primitive cells obtained the energy for their metabolism from glycolysis rather than respiration, and the fact that they were rich in thiols and other reducing agents did not present a problem because they were not normally confronted with appreciable levels of dioxygen (O2) or other strong oxidants. The advent of photosynthesis changed this situation dramatically by introducing gaseous dioxygen into the atmosphere, initiating what has been referred to as the most dramatic example of environmental pollution that has ever occurred on earth (Levine, 1988). Ultimately, the level of dioxygen reached its modern level of 21%, an environment that is toxic to strict anaerobic bacteria, the modern-day descendants of those first primitive organisms. By contrast, modern aerobic organisms, which, like anaerobic organisms, also consist of cells rich in reducing agents, evolved to use the powerful oxidizing potential of dioxygen to their benefit by developing respiration and, at the same time, elaborate systems to protect, repair, or replace their components that might be damaged by the oxidation reactions that are the inevitable by-product of dioxygen metabolism (Bilinski, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbar, M., Meyerstein, D., and Neta, P. (1966) Reactivity of Aliphatic Compounds Towards Hydroxyl Radicals. J. Chem. Soc., B, Phys. Org., 88, 742 – 747.

    Article  Google Scholar 

  • Bach, R. D., Su, M. D., André, J. L., and Schlegel, H. B. (1993) Structure and Reactivity of Diamidoiron(III) Hydroperoxide. The Mechanism of Oxygen Atom Transfer to Ammonia. J. Am. Chem. Soc., 115, 8763–8769.

    Article  Google Scholar 

  • Barlow, C. H., Maxwell, J. C., Wallace, W. J., and Caughey, W. S. (1973) Elucidation of the Binding Mode of Oxygen to Iron in Oxyhemoglobin by Infrared Spectroscopy. Biochem. Biophys. Res. Commun., 55, 91–95.

    Article  Google Scholar 

  • Bartlett, P. D. (1950) Recent Work on the Mechanisms of Peroxide Reactions. Rec. Chem. Prog., 11, 47–51.

    Google Scholar 

  • Basolo, F., Hoffman, B. M., and Ibers, J. A. (1975) Synthetic Oxygen Carriers of Biological Interest. Acc. Chem. Res., 8, 384–392.

    Article  Google Scholar 

  • Bilinski, T. (1991) Oxygen Toxicity and Microbial Evolution. Biosystems, 24, 305–312.

    Article  Google Scholar 

  • Bruice, T. C. (1988) Chemical Studies Related to Iron Protoporphyrin-IX Mixed-Function Oxidases, in Mechanistic Principles of Enzyme Activity (J. F. Liebman and A. Greenberg, Eds.), VCH Publishers, New York, 227–277.

    Google Scholar 

  • Brunori, M., Giardina, B., and Kuiper, H. A. (1982) Oxygen-transport Proteins. Inorg. Biochem., 3, 126–182.

    Article  Google Scholar 

  • Buchler, J. W. (1978) Hemoglobin—An Inspiration for Research in Coordination Chemistry. Ang. Chem. Int. Ed. Engl., 17, 407–423.

    Article  Google Scholar 

  • Burstyn, J. N., Roe, J. A., Miksztal, A. R., Shaevitz, B. A., Lang, G., and Valentine, J. S. (1988) Magnetic and Spectroscopic Characterization of an Iron Porphyrin Peroxide Complex. Peroxoferrioctaethylporphyrin(1-). J. Am. Chem. Soc., 110, 1382–1388.

    Article  Google Scholar 

  • Busch, D. H., and Alcock, N. W. (1994) Iron and Cobalt“Lacunar” Complexes as Dioxygen Carriers. Chem. Rev., 94, 585–623.

    Article  Google Scholar 

  • Butler, A., Clague, M. J., and Meister, G. E. (1994) Vanadium Peroxide Complexes. Chem. Rev., 94, 625–638.

    Article  Google Scholar 

  • Bytheway, I., and Hall, M. B. (1994) Theoretical Calculations of Metal— Dioxygen Complexes. Chem. Rev., 94, 639–658.

    Article  Google Scholar 

  • Cole, P. A., and Robinson, C. H. (1991) Mechanistic Studies on a Placental Aromatase Model Reaction. J. Am. Chem. Soc., 113, 8130–8137.

    Article  Google Scholar 

  • Collman, J. P. (1977) Synthetic Models for the Oxygen-Binding Hemoproteins. Acc. Chem. Res., 10, 265–272.

    Article  Google Scholar 

  • Collman, J. P., Brauman, J. I., Halbert, T. R., and Suslick, K. S. (1976) Nature of O2 and CO Binding to Metalloporphyrins and Heme Proteins. Proc. Natl. Acad. Sci. U.S.A., 73, 3333–3337.

    Article  Google Scholar 

  • Conte, V., Di Furia, F., and Modena, G. (1992) Transition Metal Catalyzed Oxidation. The Role of Peroxometal Complexes, in Organic Peroxides (W. Ando, Ed.), John Wiley & Sons, New York, 559–598.

    Google Scholar 

  • Cotton, A. F., and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edition, John Wiley and Sons, New York.

    Google Scholar 

  • Crump, D. B., Stepaniak, R. F., and Payne, N. C. (1977) Charge Distribution in Dioxygen Complexes of Cobalt(III). The Crystal Structure and Absolute Configuration of (+)546-Δ-cis-β-[{2,13-Dimethyl-6,9-diphenyl-2,6,9,13-tetraarsatetradecane}(Dioxygen)Cobalt(III)] Perchlorate. Can. J. Chem., 55, 438–446.

    Article  Google Scholar 

  • Dickman, M. H., and Pope, M. T. (1994) Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. Chem. Rev., 94, 569–584.

    Article  Google Scholar 

  • Drago, R. S., and Corden, B. B. (1980) Spin-Pairing Model of Dioxygen Binding and Its Application to Various Transition-Metal Systems as well as Hemoglobin Cooperativity. Acc. Chem. Res., 13, 353–360.

    Article  Google Scholar 

  • Dunn, J. B., Shriver, D. F., and Klotz, I. M. (1973) Resonance Raman Studies of the Electronic State of Oxygen in Hemerythrin. Proc. Natl. Acad. Sci. U. S. A., 70, 2582–2584.

    Article  Google Scholar 

  • Dwyer, P. N., Puppe, L., Buchler, J. W., and Scheidt, W. R. (1975) Molecular Stereochemistry of (α,γ-Dimethyl-α,γ-dihydrooctaethylporphinato)-oxotitanium(IV). Inorg. Chem., 14, 1782–1785.

    Article  Google Scholar 

  • Feig, A. L., and Lippard, S. J. (1994) Reactions of Non-Heme Iron(II) Centers with Dioxygen in Biology and Chemistry. Chem. Rev., 94, 759–805.

    Article  Google Scholar 

  • Freedman, T. B., Loehr, J. S., and Loehr, T. M. (1976) A Resonance Raman Study of the Copper Protein Hemocyanin: New Evidence for the Structure of the Oxygen-Binding Site. J. Am. Chem. Soc., 98, 2809–2815.

    Article  Google Scholar 

  • George, P. (1965) The Fitness of Oxygen, in Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, Eds.), John Wiley and Sons, New York, pp. 3–36.

    Google Scholar 

  • Griffith, J. S. (1956) On the Magnetic Properties of Some Hemoglobin Complexes. Proc. R. Soc. London Ser. A, 235, 23–36.

    Article  Google Scholar 

  • Groves, J. T. (1985) Key Elements of the Chemistry of Cytochrome P-450. The Oxygen Rebound Mechanism. J. Chem. Ed., 62, 928–931.

    Article  Google Scholar 

  • Guilard, R., Fontesse, M., and Fournari, P. (1976) The First Peroxometalloporphyrin with Dioxygen Symmetrically Bonded by Both Atoms; Synthesis and X-Ray Crystal Structure of Peroxotitaniumoctaethylporphyrin. J. Chem. Soc., Chem. Commun., 161–162.

    Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C. (1985) Free Radicals in Biology and Medicine, Clarendon Press, Oxford.

    Book  Google Scholar 

  • Hamilton, G. A. (1974) Chemical Models and Mechanisms for Oxygenases, in Molecular Mechanisms of Oxygen Activation (O. Hayaishi, Ed.), Academic Press, New York, pp. 405–451.

    Google Scholar 

  • Hammond, G. S., and Wu, C.-H. S. (1968) Oxidation of Iron(II) Chloride in Nonaqueous Solvents, in Oxidation of Organic Compounds (R. F. Gould, Ed.), Advances in Chemistry Series, vol. 3, American Chemical Society, Washington, Dc, pp. 186–207.

    Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990) Ferryl and Hydroxy Intermediates in the Reaction of Oxygen with Reduced Cytochrome C Oxidase. Nature, 348, 89–90.

    Article  Google Scholar 

  • Hanson, L. K., and Hoffman, B. M. (1980) Griffith Model Bonding in Dioxygen Complexes of Manganese Porphyrins. J. Am. Chem. Soc., 1O2, 46O2–4609 .

    Google Scholar 

  • Heicklen, J. (1981) The Correlation of Rate Coefficients for H-Atom Abstraction by Ho Radicals with C-H Bond Dissociation Enthalpies. Int. J. Chem. Kinet., 13, 651–665.

    Article  Google Scholar 

  • Ho, R. Y. N., Liebman, J. F., and Valentine, J. S. (1995) Overview of the Energetics and Reactivity of Oxygen, in Active Oxygen in Chemistry (C. S. Foote, A. Greenberg, J. F. Liebman, and J. S. Valentine, Eds.), Chapman & Hall, New York, pp. 1–23.

    Chapter  Google Scholar 

  • Holm, H. (1987) Metal-Centered Oxygen Atom Transfer Reactions. Chem. Rev., 87, 1401–1449.

    Article  Google Scholar 

  • Ingraham, L. L., and Meyer, D. L. (1985) Biochemistry of Dioxygen, Plenum, New York, pp. 55–64.

    Book  Google Scholar 

  • Jameson, G. B., and Ibers, J. A. (1994) Biological and Synthetic Dioxygen Carriers, in Bioinorganic Chemistry (I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, Eds.), University Science Books, Mill Valley, Ca, pp. 167–252.

    Google Scholar 

  • Jeong, K.-M., and Kaufman, F. (1982) Kinetics of the Reaction of Hydroxyl Radical with Methane and with Nine Cl- and F-substituted Methanes. 2. Calculation of Rate Parameters as a Test of Transiton State Theory. J. Phys. Chem., 86, 1816–1821.

    Article  Google Scholar 

  • Kitajima, N., and Moro-Oka, Y. (1994) Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives. Chem. Rev., 94, 737–757.

    Article  Google Scholar 

  • Klotz, I. M., and Kurtz, D. M., Jr. (1984) Binuclear Oxygen Carriers: Hemerythrin. Acc. Chem. Res., 17, 16–22.

    Article  Google Scholar 

  • Koppenol, W. H. (1988) The Paradox of Oxygen: Thermodynamics versus Toxicity, in Oxidases and Related Redox Systems, 4th ed. (T. E. King, H. S. Mason, and M. Morrison, Eds.), Alan R. Liss, New York, pp. 93–109.

    Google Scholar 

  • Leising, R. A., Brennan, B. A., Que, L., Jr., Fox, B. G., and Münck, E. (1991) Models for Non-heme Iron Oxygenases: A High-valent Iron-oxo Intermediate. J. Am. Chem. Soc., 113, 3988–3990.

    Article  Google Scholar 

  • Levine, J. S. (1988) The Origin and Evolution of Atmospheric Oxygen, in Oxidases and Related Redox Systems, 4th ed. (T. E. King, H. S. Mason, and M. Morrison, Eds.), Alan R. Liss, New York, pp. 111–126.

    Google Scholar 

  • Magnus, K. A., Ton-That, H., and Carpenter, J. E. (1994) Recent Structural Work on the Oxygen Transport Protein Hemocyanin. Chem. Rev., 94, 727–735.

    Article  Google Scholar 

  • Malmström, B. G. (1982) Enzymology of Oxygen. Annu. Rev. Biochem., 51, 21–59.

    Article  Google Scholar 

  • McCandlish, E., Miksztal, A. R., Nappa, M., Sprenger, A. Q., Valentine, J. S., Stong, J. D., and Spiro, T. G. (1980) Reactions of Superoxide with Iron Porphyrins in Aprotic Solvents. A High Spin Ferric Porphyrin Peroxo Complex. J. Am. Chem. Soc., 102, 4268–4271.

    Article  Google Scholar 

  • McLendon, G., and Martell, A. E. (1976) Inorganic Oxygen Carriers as Models for Biological Systems. Coord. Chem. Rev., 19, 1–39.

    Article  Google Scholar 

  • McMurry, T. J., and Groves, J. T. (1986) Metalloporphyrin Models for Cytochrome P-450, in Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), Plenum, New York, pp. 1–28.

    Google Scholar 

  • Momenteau, M., and Reed, C. A. (1994) Synthetic Heme Dioxygen Complexes. Chem. Rev., 94, 659 – 698.

    Article  Google Scholar 

  • Mori, M., Weil, J. A., and Ishiguro, M. (1968) The Formation of and Interrelation Between Some µ-Peroxo Binuclear Cobalt Complexes. II. J. Am. Chem. Soc., 90, 615 – 621.

    Article  Google Scholar 

  • Morrison, M., and Schönbaum, G. R. (1976) Peroxidase-Catalyzed Halogenation. Ann. Rev. Biochem., 45, 861–888.

    Article  Google Scholar 

  • Müller, W., and Schneider, H.-J. (1979) Regio- and Stereospecific Hydroxylation of Alicyclic Hydrocarbons with Substituted Perbenzoic Acids. Angew. Chem. Int. Ed. Engl., 18, 407–408.

    Article  Google Scholar 

  • Murata, K., Panicucci, R., Gopinath, E., and Bruice, T. C. (1990) 5,10,15,20-Tetrakis (2,6-dichloro-3-sulfonatophenyl) Porphinato-iron(III) Hydrate with Alkyl and Acyl Hydroperoxides. The Dynamics of Reaction of Water-soluble and Non-μ-oxo Dimer Forming Iron(III) Porphyrins in Aqueous Solution. 7. J. Am. Chem. Soc., 112, 6072–6083.

    Article  Google Scholar 

  • Ortiz De Montellano, P. R. (1986) Cytochrome P-450. Structure, Mechanism, and Biochemistry, Plenum, New York.

    Google Scholar 

  • Ostovic, D., and Bruice, T. C. (1992) Mechanism of Alkene Epoxidation by Iron, Chromium, and Manganese Higher Valent Oxo-metalloporphyrins. Acc. Chem. Res., 25, 314–320.

    Article  Google Scholar 

  • Palmer, G. (1987) Cytochrome Oxidase: A Perspective. Pure Appl. Chem, 59, 749–758.

    Article  Google Scholar 

  • Pauling, L. (1964) Nature of the Iron—Oxygen Bond in Oxyhaemoglobin. Nature, 203, 182–183.

    Article  Google Scholar 

  • Poulos, T. L. (1986) The Crystal Structure of Cytochrome P-450cam, in Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, Ed.), Plenum, New York, pp. 505–523.

    Google Scholar 

  • Pryor, W. A. (1976) Free Radicals in Biology, New York, Academic Press.

    Google Scholar 

  • Quinn, R., Mercer-Smith, J., Burstyn, J. N., and Valentine, J. S. (1984) The Influence of Hydrogen Bonding on the Properties of Iron Porphyrin Imidazole Complexes. An Internally Hydrogen Bonded Imidazole Ligand. J. Am. Chem. Soc, 106, 4136–4144.

    Article  Google Scholar 

  • Quinn, R., Nappa, M., and Valentine, J. S. (1982) New Five- and Sixcoordinate Imidazole and Imidazolate Complexes of Ferric Tetraphenylporphyrin. J. Am. Chem. Soc., 104, 2588–2595.

    Article  Google Scholar 

  • Raynor, J. B., Gillard, R. D., and Pedrosa De Jesus, J. D. (1982) Paramagnetic Dioxygen Complexes of Rhodium. J. Chem. Soc., Dalton Trans., 1165–1166.

    Google Scholar 

  • Rice, C. E., Robinson, W. R., and Tofield, B. C. (1976) Crystal Structure of a Condensed Phosphatosilicate, Oxovanadium(IV) Diphosphatomonosilicate, Vo(SiP2O8). Inorg. Chem., 15, 345–348.

    Article  Google Scholar 

  • Riechel, T. L., De Hayes, L. J., and Sawyer, D. T. (1976) Electrochemical Studies of Vanadium(III), -(IV), and (V) Complexes of Diethyldithiocarbamate in Acetonitrile. Inorg. Chem., 15, 1900–1904.

    Article  Google Scholar 

  • Roberts, H. L., and Symes, W. R. (1968) The Reaction of Dipotassium Hydridotetracyanoaquorhodate(III) with Oxygen Dipotassium Hydroperoxotetracyanoaquorhodate(III). J. Chem. Soc., 1450–1453.

    Google Scholar 

  • Sawaki, Y. (1992) Peroxy Acids and Peroxy Esters, in Organic Peroxides (W. Ando, Ed.), John Wiley & Sons, New York, pp. 425–477.

    Google Scholar 

  • Sawyer, D. T. (1988) The Chemistry and Activation of Dioxygen Species (O2, O- 2, and Hooh) in Biology, in Oxygen Complexes and Oxygen Activation by Transition Metals (A. E. Martell and D. T. Sawyer, Eds.), Plenum, New York, pp. 131–148.

    Chapter  Google Scholar 

  • Sawyer, D. T. (1991) Oxygen Chemistry, Oxford University Press, New York.

    Google Scholar 

  • Schneider, H.-J. and Müller, W. (1985) Mechanistic and Preparative Studies on the Regio- and Stereoselective Paraffin Hydroxylation with Peracids. J. Org. Chem., 50, 4609–4615.

    Article  Google Scholar 

  • Sheldon, R. A., and Kochi, J. K. (1981) Metal-catalyzed Oxidations of Organic Compounds, Academic Press, New York.

    Google Scholar 

  • Springer, B. A., Sligar, S. G., Olson, J. S., and Phillips, G. N., Jr. (1994) Mechanisms of Ligand Recognition in Myoglobin. Chem. Rev., 94, 699–714.

    Article  Google Scholar 

  • Stassinopoulos, A., and Caradonna, J. P. (1990) Binuclear Non-heme Iron Oxo Transfer Analogue Reaction System: Observations and Biological Implications. J. Am. Chem. Soc., 112, 7071–7073.

    Article  Google Scholar 

  • Stenkamp, R. E. (1994) Dioxygen and Hemerythrin. Chem. Rev., 94, 715–726.

    Article  Google Scholar 

  • Summerville, D. A., Jones, R. D., Hoffman, B. M., and Basolo, F. (1979) Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest. J. Chem. Ed., 56, 157–162.

    Article  Google Scholar 

  • Taube, H. (1965) Mechanisms of Oxidations with Oxygen. J. Gen. Physiol, 49, 29–52.

    Article  Google Scholar 

  • Tovrog, B. S., Kitko, D. J., and Drago, R. S. (1976) Nature of Bound O2 in a Series of Cobalt Dioxygen Adducts. J. Am. Chem. Soc., 98, 5144–5153.

    Article  Google Scholar 

  • Traylor, T. G., and Ciccone, J. P. (1989) Mechanism of Reactions of Hydrogen Peroxide and Hydroperoxides with Iron(III) Porphyrins. Effects of Hydroperoxide Structure on Kinetics. J. Am. Chem. Soc., 111, 8413–8420.

    Article  Google Scholar 

  • Urban, M. W., Nakamoto, K., and Basolo, F. (1982) Infrared Spectra of Molecular Oxygen Adducts of (Tetraphenylporphyrinato) Manganese(II) in Argon Matrices. Inorg. Chem. 21, 3406–3408.

    Article  Google Scholar 

  • Valentine, J. S. (1994) Dioxygen Reactions, in Bioinorganic Chemistry (I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, Eds.), University Science Books, Mill Valley, Ca, pp. 253–313.

    Google Scholar 

  • Vanngard, T. (1988) Biophysical Chemistry of Dioxygen Reactions in Respiration and Photosynthesis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Vaska, L. (1976) Dioxygen-Metal Complexes: Toward a Unified View. Acc. Chem. Res., 9, 175–183.

    Article  Google Scholar 

  • Wikström, M., and Babcock, G. T. (1990) Catalytic Intermediates. Nature, 348, 16–17.

    Article  Google Scholar 

  • Wilkinson, G., Gillard, R. D., and Mccleverty, J. A. (1987) Comprehensive Coordination Chemistry, Pergamon, New York.

    Google Scholar 

  • Yang, Y., Diederich, F., and Valentine, J. S. (1990) Reaction of Cyclohexene with Iodoxylbenzene Catalyzed by Non-porphyrin Complexes of Iron(III) and Aluminum(III). Newly Discovered Products and a New Mechanistic Proposal. J. Am. Chem. Soc., 112, 7826–7828.

    Article  Google Scholar 

  • Yang, Y., Diederich, F., and Valentine, J. S. (1991) Lewis Acidic Catalysts for Olefin Epoxidation by Iodosylbenzene. J. Am. Chem. Soc., 113, 7195–7205.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ho, R.Y.N., Liebman, J.F., Valentine, J.S. (1995). Biological Reactions of Dioxygen: An Introduction. In: Valentine, J.S., Foote, C.S., Greenberg, A., Liebman, J.F. (eds) Active Oxygen in Biochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9783-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9783-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9785-4

  • Online ISBN: 978-1-4613-9783-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics