Advertisement

Material Characterization by Acoustic Microscope with Line-Focus Beam

  • Jun-ichi Kushibiki
  • Akira Ohkubo
  • Noriyoshi Chubachi
Part of the Acoustical Imaging book series (ACIM, volume 12)

Abstract

The V(z) curves1 have played a very important role in the recent rapid progress of development of the mechanically scanned acoustic microscope using a highly convergent beam. In the acoustical imaging measurements, the V(z) curves have been effectively employed for the interpretation of contrast mechanisms in acoustic images1-4 obtained in scanning version and for the imaging signal processing for obtaining false-color micrographs5 . Further, it has been found out that the V(z) curves are of particular importance in the quantitative measurements of acoustic properties of materials because they are unique and characteristic of specific materials. Recently, for this latter case, a new acoustic line-focus beam' has been introduced with which the nonscanning reflection acoustic microscope can appropriately pick up acoustic properties of solid materials, including acoustic anisotropy.8-10

Keywords

Phase Velocity Material Characterization Acoustic Property Reflectance Function Acoustic Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Atalar, C. F. Quate, and H. K. Wickramasinghe, Phase imaging in reflection with the acoustic microscope, Appl. Phys. Lett. 31:791 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    C. F. Quate, A. Atalar, and H. K. Wickramasinghe, Acoustic microscope with mechanical scanning A review, Proc. IEEE 67: 1092 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    R. D. Weglein and R. G. Wilson, Characteristic material signatures by acoustic microscopy, Electron. Lett. 14:352 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    R. C. Bray, C. F. Quate, J. Calhoun, and R. Koch, Film adhesion studies with the acoustic microscope, Thin Solid Films 74:295 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    R. Hammer and R. L. Hollis, Enhancing micrographs obtained with a scanning acoustic microscope using false-color encoding, Appl. Phys. Lett. 40:678 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    R. D. Weglein, A model for predicting acoustic material signatures, Appl. Phys. Lett. 34:179 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    J. Kushibiki, A. Ohkubo, and N. Chubachi, Linearly focused acoustic beams for acoustic microscopy, Electron. Lett. 17:520 (1981).CrossRefGoogle Scholar
  8. 8.
    J. Kushibiki, A. Ohkubo, and N. Chubachi, Anisotropy detection in sapphire by acoustic microscope using line-focus beam, Electron. Lett. 17:534 (1981).CrossRefGoogle Scholar
  9. 9.
    J. Kushibiki, A. Ohkubo, and N. Chubachi, Acoustic anisotropy detection of materials by acoustic microscope using line-focus beam, 1981 IEEE Ultrasonics Symp. Proc. pp.552–556 (1981).Google Scholar
  10. 10.
    J. Kushibiki, A. Ohkubo, and N. Chubachi, Propagation characteristics of leaky SAWs on water/LiNbO3 boundary measured by acoustic microscope with line-focus beam, Electron. Lett. 18:6 (1982).CrossRefGoogle Scholar
  11. 11.
    J. Kushibiki, A. Ohkubo and N. Chubachi, Theoretical analysis for V(z) curves obtained by acoustic microscope with line-focus beam, Electron. Lett. (1982), (in press).Google Scholar
  12. 12.
    A. Atalar, An angular spectrum approach to contrast in reflection acoustic microscope, J. Appl. Phys. 49:5130 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    H. K. Wickramasinghe, Contrast in reflection acoustic microscopy, Electron. Lett. 14:305 (1978).CrossRefGoogle Scholar
  14. 14.
    J. Kushibiki, A. Ohkubo, and N. Chubachi, Effect of leaky SAW parameters on V(z) curves obtained by acoustic microscopy, Electron. Lett. (1982) (in press).Google Scholar
  15. 15.
    W. Parmon and H. L. Bertoni, Ray interpretation of the material signature in the acoustic microscope, Electron. Lett. 15:684 (1979).CrossRefGoogle Scholar
  16. 16.
    A. Atalar, A physical model for acoustic signatures, J. Appl. Phys. 50:8237 (1979).ADSCrossRefGoogle Scholar
  17. 17.
    J. Kushibiki, H. Maehara, and N. Chubachi, Acoustic properties of evaporated chalcogenide glass films, Electron. Lett. 17:322 (1981).CrossRefGoogle Scholar
  18. 18.
    J. Kushibiki, T. Sannomiya, and N. Chubachi, A novel acoustic measurement system for pulse mode in VHF and UHF ranges, (unpublished).Google Scholar
  19. 19.
    J. J. Campbell and W. R. Jones, Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium, IEEE Trans. SU-17:71 (1970).Google Scholar
  20. 20.
    J. B. Wachtman, Jr., W. E. Tefft, and D. G. Lam, Jr., Elastic constants of rutile (TiO2), J. Res. Natl. Bur. Std. - A. Phys. & Chem. 66A:465 (1962).CrossRefGoogle Scholar
  21. 21.
    A. J. Slobodnik, E. D. Conway, and R. T. Delmonico, Microwave Acoustic Handbook Vol. 1A. Surface wave velocities, (AFCRL-TR-73–0597, 1973).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Jun-ichi Kushibiki
    • 1
  • Akira Ohkubo
    • 1
  • Noriyoshi Chubachi
    • 1
  1. 1.Department of Electrical Engineering, Faculty of EngineeringTohoku UniversitySendai 980Japan

Personalised recommendations