Skip to main content

The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem

  • Chapter

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 23))

Abstract

Let G be a group or monoid which is presented by means of a complete rewriting system. Then one can use the resulting normal forms to collapse the classifying space of G down to a quotient complex (typically “small”) of the same homotopy type. If the rewriting system is finite, then the quotient complex has only finitely many cells in each dimension. The proof yields an explicit free resolution of Z over Z G, similar to resolutions obtained by Anick, Groves, and Squier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), 641–659.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. M. Bergman, The diamond lemma for ring theory, Advances in Math. 29 (1978), 178–218.

    Article  MathSciNet  Google Scholar 

  3. M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985), 485–498.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. S. Brown, “Cohomology of Groups,” Graduate Texts in Mathematics 87, Springer-Verlag, New York, 1982.

    Google Scholar 

  5. K. S. Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987), 45–75.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. S. Brown and R. Geoghegan, An infinite-dimensional torsion-free FP. group, Invent. Math. 77 (1984), 367–381.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Cartan and S. Eilenberg, “Homological Algebra,” Princeton University Press, Princeton, 1956.

    Google Scholar 

  8. B. Eckmann, Der Cohomologie-Ring einer beliebigen Gruppe, Comment. Math. Helv. 18 (1946), 232–282.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480–509.

    Article  MATH  MathSciNet  Google Scholar 

  10. Z. Fiedorowicz, Classifying spaces of topological monoids and categories, Amer. J. Math. 106 (1984), 301–350.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. R. J. Groves, Rewriting systems and resolutions over group rings,in preparation.

    Google Scholar 

  12. J. R. J. Groves and G. C Smith, Rewriting systems and soluble groups,preprint.

    Google Scholar 

  13. D. E. Knuth, “The Art of Computer Programming,” Volume 1, Fundamental algorithms, second edition, Addison-Wesley, Reading, 1973.

    Google Scholar 

  14. P. Le Chenadec, “Canonical Forms in Finitely Presented Algebras,” Research Notes in Theoretical Computer Science, Pitman (London-Boston) and Wiley (New York), 1986.

    Google Scholar 

  15. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. 52 (1950), 650–665.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. McDuff, On the classifying spaces of discrete monoids, Topology 18 (1979), 313–320.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Quillen, Higher algebraic K-theory. I, in “Algebraic K-theory, I: Higher K-theories,” Proc. Conf., Battelle Memorial Inst., Seattle, 1972, Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147.

    Google Scholar 

  18. G. B. Segal, Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 105–112.

    Article  MATH  Google Scholar 

  19. C. C. Squier, Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49 (1987), 201–217.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Brown, K.S. (1992). The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem. In: Baumslag, G., Miller, C.F. (eds) Algorithms and Classification in Combinatorial Group Theory. Mathematical Sciences Research Institute Publications, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9730-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9730-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9732-8

  • Online ISBN: 978-1-4613-9730-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics