Decision Problems for Groups — Survey and Reflections

  • Charles F. MillerIII
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 23)


This is a survey of decision problems for groups, that is of algorithms for answering various questions about groups and their elements. The general objective of this area can be formulated as follows:
  • Objective: To determine the existence and nature of algorithms which decide
    • local properties — whether or not elements of a group have certain properties or relationships;

    • global properties— whether or not groups as a whole possess certain properties or relationships.


Word Problem Cayley Graph Conjugacy Problem Isomorphism Problem Polycyclic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. I. Adian, Algorithmic unsolvability of problems of recognition of certain properties of groups, Dokl. Akad. Nauk SSSR 103, 533–535 (1955).MATHGoogle Scholar
  2. [2]
    S. I. Adian, The unsolvability of certain algorithmic problems in the theory of groups, Trudy Moskov. Mat. Obsc. 6, 231–298 (1957).MATHGoogle Scholar
  3. [3]
    S. I. Adian, Finitely presented groups and algorithms, Dokl. Akad. Nauk SSSR 117, 9–12 (1957).MATHGoogle Scholar
  4. [4]
    J. Alonso, Combings of groups,this volume.Google Scholar
  5. [5]
    J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short Notes on negatively curved groups, MSRI preprint, 1989; to appear in the proceedings of the conference “Group theory from a geometrical viewpoint” held at Trieste, 1990.Google Scholar
  6. [6]
    D. J. Anick, On the homology of associative algebras, Trans. Amer. Math. Soc. 296, 641–659 (1986).CrossRefMathSciNetGoogle Scholar
  7. [7]
    A. V. Anisimov, Groups languages, Kybernetika 4, 18–24 (1971).Google Scholar
  8. [8]
    W. Ballmann, E. Ghys, A. Haefliger, “ Sur les groupes hyperboliques d’après Mikhael Gromov” (Notes of a seminar held at Berne), edited by E. Ghys and P. de la Harpe, Birkhäuser, Progress in Mathematics Series, 1990.Google Scholar
  9. [9]
    G. Baumslag, Finitely generated residually torsion free nilpotent groups,in preparation.Google Scholar
  10. [10]
    G. Baumslag, W. W. Boone and B. H. Neumann, Some unsolvable problems about elements and subgroups of groups, Math. Scand. 7, 191–201 (1959).MATHMathSciNetGoogle Scholar
  11. [11]
    G. Baumslag, F. B. Cannonito and C. F. Miller III, Computable algebra and group embeddings, Journ. of Algebra 69, 186–212 (1981).CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    G. Baumslag, F. B. Cannonito and C. F. Miller III, Infinitely generated subgroups of finitely presented groups, I, Math. Zeit. 153, 117–134 (1977).CrossRefGoogle Scholar
  13. [13]
    G. Baumslag, F. B. Cannonito and C. F. Miller III, Infinitely generated subgroups of finitely presented groups, II, Math. Zeit. 172, 97–105 (1980).CrossRefGoogle Scholar
  14. [14]
    G. Baumslag, F. B. Cannonito and C. F. Miller III, Some recognizable properties of solvable groups, Math. Zeit. 178, 289–295 (1981).CrossRefGoogle Scholar
  15. [15]
    G. Baumslag, F. B. Cannonito, D. J. S. Robinson and D. Segal, The algorithmic theory of polycyclic-by-finite groups, to appear in Journal of Algebra.Google Scholar
  16. [16]
    G. Baumslag, E. Dyer and C. F. Miller III, On the integral homology of finitely presented groups, Topology 22, 27–46 (1983).CrossRefMATHMathSciNetGoogle Scholar
  17. [17]
    G. Baumslag, S. M. Gersten, M. Shapiro and H. Short, Automatic groups and amalgams, to appear. (A summary appears in this volume.)Google Scholar
  18. [18]
    G. Baumslag, D. Gildenhuys and R. Strebel, Algorithmically insoluble problems about finitely presented soluble groups, Lie and associative algebras, I, Journ. Pure and Appl. Algebra 39, 53–94 (1986).MATHMathSciNetGoogle Scholar
  19. [19]
    G. Baumslag and J. E. Roseblade, Subgroups of direct products of free groups, Journ. London Math. Soc. (2) 30, 44–52 (1984).CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68, 199–201 (1962).CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    W. W. Boone, Certain simple unsolvable problems in group theory, I, II, III, IV, V, VI, Nederl. Akad. Wetensch Proc. Ser. A57, 231–237,492–497 (1954), 58, 252–256,571–577 (1955), 60, 22–27, 227–232 (1957).Google Scholar
  22. [22]
    W. W. Boone Word problems and recursively enumerable degrees of unsolvability. A sequel on finitely presented groups., Annals of Math. 84, 49–84 (1966).MATHMathSciNetGoogle Scholar
  23. [23]
    W. W. Boone and G. Higman, An algebraic characterization of the solvability of the word problem, J. Austral. Math. Soc. 18, 41–53 (1974).CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    W. W. Boone and H. Rogers Jr., On a problem of J.H.C. Whitehead and a problem of Alonzo Church, Math. Scand. 19, 185–192 (1966).MATHMathSciNetGoogle Scholar
  25. [25]
    K. S. Brown, The geometry of rewriting systems: a proof of the Anick-GrovesSquier theorem, this volume.Google Scholar
  26. [26]
    J. W. Cannon, D. B. A. Epstein, D. F. Holt, M. S. Patterson and W. P. Thurston, Word processing and group theory, preprint, University of Warwick, 1988.Google Scholar
  27. [27]
    C.R.J. Clapham, Finitely presented groups with word problems of arbitrary degrees of insolubility, Proc. London Math. Soc. (3) 14, 633–676 (1964).CrossRefMATHGoogle Scholar
  28. [28]
    C.R.J. Clapham, An embedding theorem for finitely generated groups, Proc. London Math. Soc. (3) 17, 419–430 (1967).CrossRefMATHGoogle Scholar
  29. [29]
    D. J. Collins, Representation of Turing reducibility by word and conjugacy problems in finitely presented groups, Acta Mathematica 128, 73–90 (1972).CrossRefMathSciNetGoogle Scholar
  30. [30]
    D. J. Collins and C. F. Miller III, The conjugacy problem and subgroups of finite index, Proc. London Math. Soc.ser 3 34, 535–556 (1977).Google Scholar
  31. [31]
    M. Dehn, Uber unendliche diskontinuerliche Gruppen, Math. Ann. 69, 116–144 (1911).Google Scholar
  32. [32]
    M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81, 449–457 (1985).MATHGoogle Scholar
  33. [33]
    V. H. Dyson The word problem and residually finite groups, Notices Amer. Math. Soc. 11, 734 (1964).Google Scholar
  34. [34]
    E. Formanek, Conjugacy separability in polycyclic groups, Journ. Algebra 42, 1–10 (1976).CrossRefMathSciNetGoogle Scholar
  35. [35]
    A. A. Fridman, Degrees of unsolvability of the word problem for finitely defined groups, Izdalel’stvo “Nauk”, Mpscow, 193pp (1967).Google Scholar
  36. [36]
    S. M. Gersten, Dehn functions and ll-norms of finite presentations,this volume.Google Scholar
  37. [37]
    S. M. Gersten and H. Short, Small cancellation theory and automatic groups, Inventiones Math. 102, 305–334 (1990).CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    S. M. Gersten and H. Short, Small cancellation theory and automatic groups, Part II,to appear in Inventiones Math.Google Scholar
  39. [39]
    S. M. Gersten and H. Short, Rational subgroups of biautomatic groups,to appear in Annals of Math.Google Scholar
  40. [40]
    C. M. Gordon, Some embedding theorems and undecidability questions for groups, unpublished manuscript, 1980.Google Scholar
  41. [41]
    A. V. Gorjaga and A. S. Kirkinskii, The decidability of the conjugacy problem cannot be transferred to finite extensions of groups, Algebra i Logica 14, 393–406 (1975).MathSciNetGoogle Scholar
  42. [42]
    A. P. Goryushkin, Imbedding of countable groups in 2-generator groups, Mat. Zametki 16, 231–235 (1974).MATHGoogle Scholar
  43. [43]
    M. D. Greendlinger, Dehn’s algorithm for the word problem, Comm. Pure Appl. Math. 13, 67–83 (1960).Google Scholar
  44. [44]
    M. D. Greendlinger, On Dehn’s algorithms for the conjugacy and word problems with applications, Comm. Pure Appl. Math. 13, 641–677 (1960).MATHMathSciNetGoogle Scholar
  45. [45]
    M. Gromov, Hyperbolic groups, in “Essays on group theory”, MSRI series vol. 8, edited by S. Gersten, Springer-Verlag, 1987Google Scholar
  46. [46]
    J. R. J. Groves, Rewriting systems and homology of groups,to appear in Proceedings of Canberra Group Theory Conf. ed. L. G. Kovacs,in Lecture Notes in Math. (Springer).Google Scholar
  47. [47]
    J. R. J. Groves and G. C. Smith, Rewriting systems and soluble groups, University of Melbourne preprint, 1989.Google Scholar
  48. [48]
    F. Grunewald and D. Segal, Some general algorithms. I: Arithmetic groups, II: Nilpotent groups, Annals of Math. 112 531–583, 585–617 (1980).Google Scholar
  49. [49]
    F. Grunewald and D. Segal, Decision problems concerning S-arithmetic groups, Journ. Symbolic Logic 90, 743–772 (1985).CrossRefMathSciNetGoogle Scholar
  50. [50]
    M. Hall Jr., “The theory of groups”, Macmillan, New York, 1959.MATHGoogle Scholar
  51. [51]
    P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. III4, 419–436 (1954).Google Scholar
  52. [52]
    P. Hall, Embedding a group in a join of given groups, J. Austral. Math. Soc. 17, 434–495 (1974).CrossRefMATHMathSciNetGoogle Scholar
  53. [53]
    G. Higman, A finitely generated infinite simple group, J. London Math. Soc. 26, 61–64 (1951).CrossRefMATHMathSciNetGoogle Scholar
  54. [54]
    G. Higman, Subgroups of finitely presented groups, Proc. Royal Soc. London Ser. A 262, 455–475 (1961).CrossRefMATHGoogle Scholar
  55. [55]
    G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24, 247–254 (1949).CrossRefMathSciNetGoogle Scholar
  56. [56]
    J. Hoperoft and J. Ullman, “Introduction to automata theory, languages and computation”, Addison-Wesley, Boston, 1979.Google Scholar
  57. [57]
    A. Juhasz, Solution of the conjugacy problem in one relator groups,this volume.Google Scholar
  58. [58]
    O. Kharlampovich, A finitely presented soluble group with insoluble word problem, Izvestia Akad. Nauk Ser. Mat. 45, 852–873 (1981).MATHMathSciNetGoogle Scholar
  59. [59]
    Yu. G. Kleiman, Identities and some algorithmic problems in groups, Dokl. Akad. Nauk SSSR 244, 814–818 (1979).Google Scholar
  60. [60]
    Yu. G. Kleiman, On some questions of the theory of varieties of groups, Dokl. Akad. Nauk SSSR 257, 1056–1059 (1981).Google Scholar
  61. [61]
    Yu. G. Kleiman, On identities in groups, Trudy Moskov Mat. Obshch. 44, 62–108 (1982).MATHGoogle Scholar
  62. [62]
    Yu. G. Kleiman, Some questions of the theory of varieties of groups, Izv. Akad. Nauk SSSR Ser. Mat. 47, 37–74 (1983).MATHMathSciNetGoogle Scholar
  63. [63]
    A. V. Kuznetsov, Algorithms as operations in algebraic systems, Izv. Akad. Nauk SSSR Ser Mat (1958).Google Scholar
  64. [64]
    P. Le Chenadec, “Canonical forms in finitely presented algebras”, Res. Notes in Theoret. Comp. Sci., Pitman (London-Boston) and Wiley(New York ), 1986.Google Scholar
  65. [65]
    R. C. Lyndon, On Dehn’s algorithm, Math. Ann. 166, 208–228 (1966).CrossRefMATHMathSciNetGoogle Scholar
  66. [66]
    R. C. Lyndon and P. E. Schupp, “Combinatorial Group Theory”, Springer-Verlag, Berlin-Heidleberg-New York,1977.Google Scholar
  67. [67]
    I. G. Lysbnok, On some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat. 53 No. 4 (1989); English transl. in Math. USSR Izv. 35 145–163 (1990).Google Scholar
  68. [68]
    K. Madlener and F. Otto, About the descriptive power of certain classes of string-rewriting systems, Theoret. Comp. Sci. 67 143–172 (1989).CrossRefMATHMathSciNetGoogle Scholar
  69. [69]
    W. Magnus, Über diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitsats), J. Reine Angew. Math. 163, 141–165 (1930).MATHGoogle Scholar
  70. [70]
    W. Magnus, Das Identitätsproblem für Gruppen mit einer definierenden Relation, Math. Ann.106, 295–307 (1932).Google Scholar
  71. [71]
    W. Magnus, A. Karrass and D. Solitar, “Combinatorial Group Theory”, Wiley, New York, 1966.MATHGoogle Scholar
  72. [72]
    A. I. Malcev, On isomorphic matrix representations of infinite groups,Mat. Sb. 8 405–422 (1940).Google Scholar
  73. [73]
    A. I. Malcev, Homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Ucen. Zap. 18, 49–60 (1958).Google Scholar
  74. [74]
    J. C. C. McKinsey, The decision problem for some classes of sentences without quantifiers, Journ. Symbolic Logic 8, 61–76 (1943).CrossRefMATHMathSciNetGoogle Scholar
  75. [75]
    K. A. Mihailova, The occurrence problem for direct products of groups, Dokl. Akad. Nauk SSSR 119, 1103–1105 (1958).MATHGoogle Scholar
  76. [76]
    K. A. Mihailova, The occurrence problem for free products of groups, Dokl. Akad. Nauk SSSR 127, 746–748 (1959).MATHGoogle Scholar
  77. [77]
    C. F. Miller III, “On group theoretic decision problems and their classification”, Annals of Math. Study 68, Princeton University Press, Princeton, NJ, 1971.Google Scholar
  78. [78]
    C. F. Miller III, The word problem in quotients of a group, in “Aspects of Effective Algebra”, ed. J.N. Crossley, Proceedings of a conference at Monash University Aug. 1979, Upside Down A Book Company, Steel’s Creek, (1981), 246–250.Google Scholar
  79. [79]
    C. F. Miller III and P. E. Schupp, Embeddings into hopfian groups, Journ. of Algebra 17, 171–176 (1971).CrossRefMATHMathSciNetGoogle Scholar
  80. [80]
    A. W. Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59, 123–135 (1966).MATHGoogle Scholar
  81. [81]
    D. E. Muller and P. E. Schupp, Groups, the theory of ends and context free languages, J. Comput. and Sys. Sci. 26, 295–310 (1983).CrossRefMATHMathSciNetGoogle Scholar
  82. [82]
    D. E. Muller and P. E. Schupp, The theory of ends, pushdown automata, and second-order logic, Theoret. Comput. Sci. 37, 51–75 (1985).MATHMathSciNetGoogle Scholar
  83. [83]
    B. H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12, 120–127 (1937).Google Scholar
  84. [84]
    B. B. Newman, Some results on one relator groups, Bull. Amer. Math. Soc 74, 568–571 (1968).CrossRefMATHMathSciNetGoogle Scholar
  85. [85]
    G. A. Noskov, On conjugacy in metabelian groups, Mat. Zametki 31 495–507 (1982).MATHGoogle Scholar
  86. [86]
    P. S. Novikov On the algorithmic unsolvability of the problem of identity, Dokl. Akad. Nauk SSSR 85, 709–712 (1952).MATHGoogle Scholar
  87. [87]
    P. S. Novikov On the algorithmic unsolvability of the word problem in group theory, Trudy Mat. Inst. Steklov 44, 1–143 (1955).Google Scholar
  88. [88]
    M. O. Rabin, Recursive unsolvability of group theoretic problems,Annals of Math. 67 172–194(1958).Google Scholar
  89. [89]
    M. O. Rabin, Computable algebra, general theory and theory of computable fields,Trans. Amer. Math. Soc. 95 341–360(1960).Google Scholar
  90. [90]
    V. N. Remmeslennikov, Finite approximability of metabelian groups, Algebra and Logic 7, 268–272 (1968).CrossRefGoogle Scholar
  91. [91]
    V. N. Remmeslennikov, Conjugacy in polycyclic groups, Algebra i Logica 8, 712725 (1969).Google Scholar
  92. [92]
    J. J. Rotman, “An introduction to the theory of groups”, (third edition), Allyn and Bacon,Boston, 1984.Google Scholar
  93. [93]
    I. N. Sanov, A property of a certain representation of a free group, Dokl. Akad. Nauk SSSR 57, 657–659 (1947).MATHMathSciNetGoogle Scholar
  94. [94]
    E. A. Scott, A finitely presented simple group with unsolvable conjugacy problem, Journ. Algebra 90, 333–353 (1984).CrossRefMathSciNetGoogle Scholar
  95. [95]
    E. A. Scott, A tour around finitely presented simple groups,this volume.Google Scholar
  96. [96]
    P. E. Schupp, On Dehn’s algorithm and the conjugacy problem, Math. Ann. 178, 119–130 (1968).CrossRefMATHMathSciNetGoogle Scholar
  97. [97]
    P. E. Schupp, Embeddings into simple groups, J. London Math. Soc. 13, 90–94 (1976).CrossRefMATHMathSciNetGoogle Scholar
  98. [98]
    D. Segal, “Polycyclic groups ”, Cambridge University Press, 1983Google Scholar
  99. [99]
    D. Segal, Decidable properties of polycyclic groups,to appear.Google Scholar
  100. [100]
    C. C. Squier, Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49, 201–217 (1989).Google Scholar
  101. [101]
    V. A. Tartakovskii, The sieve method in group theory, Mat. Sbornik 25, 350 (1949).Google Scholar
  102. [102]
    V. A. Tartakovskii, Application of the sieve method to the solution of the word problem for certain types of groups, Mat. Sbornik 25, 251–274 (1949).Google Scholar
  103. [103]
    V. A. Tartakovskii, Solution of the word problem for groups with a k-reduced basis for k6, Izv. Akad. Nauk SSSR Ser. Math. 13, 483–494 (1949).MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Charles F. MillerIII
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations