Skip to main content

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 20))

Abstract

We introduce the notion of a Jacobi bundle, which generalizes that of a Jacobi manifold. The construction of a Jacobi bundle over a conformal Jacobi manifold has, as particular cases, the constructions made by A. Weinstein [21] of a Le Brun-Poisson manifold over a contact manifold, and that of a Heisenberg-Poisson manifold over a symplectic (or Poisson) manifold. We show that the total space of a Jacobi bundle has a natural homogeneous Poisson structure, and that with each section of that bundle is associated a Hamiltonian vector field, defined on the total space of the bundle, tangent to the zero section, which projects onto the base manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Coste, P. Dazord, A. Weinstein, Groupoides symplectiques, Université Claude Bernard, Lyon 1, Publications du département de mathématiques, nouvelle série 2/A (1987), 1–62.

    Google Scholar 

  2. P. Dazord, A. Lichnerowicz, C.-M. Marte, Structure locale des variétés de Jacobi,J. Math. Pures et Appl. (1990) (to appear).

    Google Scholar 

  3. P. Dazord, D. Sondaz, Variétés de Poisson, algébroïdes de Lie, Séminaire sud-rhodanien, première partie. Université Claude Bernard, Lyon 1. Publications du département de mathématiques, nouvelle série 1/B (1988), 1–68.

    Google Scholar 

  4. F. Guédira, A. Lichnerowicz, Géométrie des algèbres de Lie de Kirillov, J. Math. Pures et Appl. 63 (1984), 407–484.

    MATH  Google Scholar 

  5. A.M. Justino, Géométrie des variétés de Poisson et des variétés de Jacobi, thèse de troisième cycle, université Pierre et Marie Curie, Paris (1984).

    Google Scholar 

  6. A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55–75.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Kostant, Quantization and representation theory. Part 1: prequantization, in “Lectures in modern analysis and applications, III,” Springer Verlag, Lecture notes in mathematics 170, Berlin, 1970, pp. 87–208.

    Google Scholar 

  8. J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque numéro hors série “Elie Cartan et les mathématiques d’aujourd’hui” (1985), 257–271.

    Google Scholar 

  9. J. Lefebvre, Transformations infinitésimales conformes et automorphismes de certaines structures presque symplectiques, thèse de doctorat d’état, Université de Paris-Sud, Orsay (1980).

    Google Scholar 

  10. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253–300.

    MATH  MathSciNet  Google Scholar 

  11. A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures et Appl. 57 (1978), 453–488.

    MATH  MathSciNet  Google Scholar 

  12. C.-M. Marie, Quelques propriétés des variétés de Jacobi, in “Géométrie symplectique et mécanique, séminaire sud-rhodanien de géométrie,” (J.P. Dufour, ed.), Travaux en cours, Hermann, Paris, 1985, pp. 125–139.

    Google Scholar 

  13. J. Pradines, Théorie de Lie pour les groupoïdes différentiables, C. R. Acad. Sc. Paris 264 A (1967), 245–248.

    Google Scholar 

  14. G. Reeb, Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques, Mémoires Acad. Roy. Belgique, Sci. 27 (1952), 130–194.

    MathSciNet  Google Scholar 

  15. J.A. Schouten, On the differential operators of first order in tensor calculus, in “Convegno Inter. Geometria Differenziale Italia,” Edizioni Cremonese, Roma, 1953.

    Google Scholar 

  16. J.-M. Souriau, “Structure des systèmes dynamiques,” Dunod, Paris, 1969.

    Google Scholar 

  17. P. Stefan, Accessibility and foliations with singularities, Bull. Amer. Math. Soc. 80 (1974), 1142–1145.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.L. Stong, Contact manifolds, J. Differential Geometry 9 (1974), 219–238.

    MATH  MathSciNet  Google Scholar 

  19. H.J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523–557.

    MATH  Google Scholar 

  21. Blowing up realizations of Heisenberg-Poisson manifolds,Bulletin des Sciences Mathématiques 113 (1989), 381–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Marle, CM. (1991). On Jacobi Manifolds and Jacobi Bundles. In: Dazord, P., Weinstein, A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9719-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9719-9_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9721-2

  • Online ISBN: 978-1-4613-9719-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics