Advertisement

The Collar Theorem

  • Daniel S. Freed
  • Karen K. Uhlenbeck
  • Mathematical Sciences Research Institute
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 1)

Abstract

We complete the proof of Donaldson’s Theorem in this chapter by showing that for ⋋ sufficiently small,
\( M\lambda = \{ \overline D \in M:\lambda \left( {\overline D } \right) \leqslant \lambda \} \) is diffeomorphic to (0, ⋋) x M. Recall from (8.30) that for ⋋ ≤ ⋋4 there is a well-defined smooth map
$$ \overline B :{M_{\lambda }} \to (0,\lambda ) \times M\overline D \mapsto \langle \lambda (\overline D ),x(\overline D )\rangle . $$

Keywords

Modulus Space Gauge Transformation Conformal Transformation Cutoff Function Decay Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Daniel S. Freed
    • 1
  • Karen K. Uhlenbeck
    • 1
  • Mathematical Sciences Research Institute
    • 2
  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA
  2. 2.BerkeleyUSA

Personalised recommendations