Skip to main content

Part of the book series: Symbolic Computation ((1064))

  • 52 Accesses

Abstract

We began this work with an interest in pursuing a symbolic, knowledge-based approach to the control of complex engineered systems. The work presented in this thesis has been based on two premises. First, we believe that qualitative process (QP) theory offers potential for reasoning about the control of complex engineered physical systems, especially when they are poorly understood or the capability for making observations of the systems is limited. Second, we surmise that problem solving in this domain proceeds by an iterative process of building, applying, and patching models of the svstem under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Agogino and A. Rege. Ides: Influence diagram based expert system. In X. Avula et al, editor, Mathematical Modelling in Science and Technology. Pergamon Press, Elmsford, N.Y., 1986.

    Google Scholar 

  2. R. Axelrod. Structure of Decision: The Cognitive Maps of the Political Elites. Princeton University Press, Princeton, N.J., 1976.

    Google Scholar 

  3. J. Baldwin. An automated fuzzy knowledge base. In R. Yager, editor, Fuzzy Systems. Pergamon Press, Elmsford, N.Y., 1981.

    Google Scholar 

  4. J. Baldwin. Support logic programming. Technical Report ITRC 65, Information Technology Research Center, Univ. of Bristol, U.K., 1985.

    Google Scholar 

  5. J. F. Baldwin. Fuzzy sets and expert systems. Inf. Sci., 36:123–156, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Barnett. Computational methods for a mathematical theory of evidence. In Proceedings of IJCAI-81 , pages 868–875. International Joint Conference on Artificial Intelligence, Aug. 1981.

    Google Scholar 

  7. B. Buchanan and E. Shortliffe. Rule-Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, Mass., 1984.

    Google Scholar 

  8. A. Bundy. Will it reach the top? prediction in the mechanics world. Artif Intell., 10(1):129–147, 1978.

    Article  MATH  Google Scholar 

  9. A. Bundy and B. Welham. Using meta-level inference for selective application of multiple rewrite rule sets in algebraic manipulation. Artif. Intell., 16(2):189–212, 1981.

    Article  MathSciNet  Google Scholar 

  10. J. Baldwin and S. Zhou. A fuzzy relational inference language. Fuzzy Sets Sys., 14, 1982.

    Google Scholar 

  11. P. Cheeseman. In defense of probability. In Proceedings of the 9th IJCAI, pages 1002–1009. International Joint Conference on Artificial Intelligence, August 1985.

    Google Scholar 

  12. I. Cochin. Analysis and Design of Dynamic Systems. Harper and Row, New York, 1980.

    Google Scholar 

  13. P. Cohen. Heuristic Reasoning about Uncertainty: An Artificial Intelligence Approach. Pitman, London, 1984.

    Google Scholar 

  14. B. D’Ambrosio. Fm - an object oriented expert programming system for experiments in approximate reasoning. Master’s thesis, University of California, Berkeley, Apr. 1984.

    Google Scholar 

  15. B. D’Ambrosio et al. Levels of abstraction in model-based reasoning. In Proceedings of ROBEXS ’85, pages 19–22. Robotics and Expert Systems Division, Instrument Society of America, June 1985.

    Google Scholar 

  16. B. D’Ambrosio. Qualitative process theory using linguistic variables. PhD thesis, University of California, Berkeley, December 1986.

    Google Scholar 

  17. Bruce D. D’Ambrosio. A hybrid approach to management of uncertainty. International Journal of Approximate Reasoning, 2(1), February 1988.

    Google Scholar 

  18. Bruce D. D’Ambrosio. Process, structure, and modularity in reasoning under uncertainty. In Proceedings of the 1987 Workshop on Uncertainty in AI, pages 64–72. American Association for Artificial Intelligence, August 1988.

    Google Scholar 

  19. J. de Kleer. Multiple representations of knowledge in a mechanics problem-solver. In Proceedings of the 5th IJCAI, pages 299–304. International Joint Conference on Artificial Intelligence, August 1977.

    Google Scholar 

  20. J. de Kleer. Causal and teleological reasoning in circuit recognition. Technical Report TR-529, Artificial Intelligence Laboratory, Massachusetts Institute of Technology., Sept. 1979.

    Google Scholar 

  21. J. de Kleer. An assumption-based tms. Artif Intell., 28(2): 127–162, Mar. 1986.

    Article  Google Scholar 

  22. J. de Kleer. Extending the atms. Artif Intell., 28(2):163–196, Mar. 1986.

    Article  Google Scholar 

  23. J. de Kleer. Problem-solving with the atms. Artif Intell., 28(2):197–224, Mar. 1986.

    Article  Google Scholar 

  24. J. de Kleer and D. Bobrow. Qualitative reasoning with higher-order derivatives. In Proceedings National Conference on Artificial Intelligence. American Association for Artificial Intelligence, Aug. 1984.

    Google Scholar 

  25. J. de Kleer and J. Brown. A qualitative physics based on confluences. Artif Intell., 24(l–3):7–83, December 1984.

    Article  Google Scholar 

  26. J. de Kleer and B. Williams. Diagnosing multiple faults. Artif Intell., 32(1):97–131, Apr. 1987.

    Article  MATH  Google Scholar 

  27. J. Doyle. A truth maintenance system. Artificial Intelligence, 12(3):231–272, 1979.

    Article  MathSciNet  Google Scholar 

  28. J. Estathiou and R. Tong. Ranking fuzzy sets: A decision theoretic approach. IEEE Trans, on Sys., Man, Cybern., SMC-12(5):655–659, Sept.-Oct. 1982.

    Google Scholar 

  29. R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Artif. Intell., 2:189–208, 1971.

    Article  MATH  Google Scholar 

  30. K. Forbus. Qualitative process theory. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mass., July 1984.

    Google Scholar 

  31. J. Gordon and E. Shortliffe. A method for managing evidential reasoning in a hierarchical hypothesis space. Artif. Intell., 26(3):323–358, July 1985.

    Article  MATH  MathSciNet  Google Scholar 

  32. Steve Hanks. Temporal reasoning about uncertain worlds. In Proceedings of the 3rd Workshop on Uncertainty in AI, pages 114–123. American Association for Artificial Intelligence, August 1987.

    Google Scholar 

  33. P. Hayes. The frame problem and related problems in artificial intelligence. In Michie, editor, Machine Intelligence 6, pages 45–59. American Elsevier, New York, 1971.

    Google Scholar 

  34. P. Hayes. Naive physics 1 - ontology for liquids. Memo, Centre pour les etudes Semantiques et Cognitives, Geneva, 1979.

    Google Scholar 

  35. P. Hayes. The naive physics manifesto. In D. Michie, editor, Expert Systems in the Micro-Electronic Age. Edinburgh University Press, Edinburgh, Scotland, 1979.

    Google Scholar 

  36. D. Heckerman and E. Horvitz. On the expressiveness of rule-based systems for reasoning with uncertainty. In Proceedings of AAAI87, pages 121–126. American Association for Artificial Intelligence, August 1987.

    Google Scholar 

  37. P. Hayes and J. McCarthy. Some philosophical problems from the standpoint of artificial intelligence. In Meltzer and Michie, editors, Machine Intelligence 4, pages 463–504. American Elsevier, New York, 1969.

    Google Scholar 

  38. R. Howard and J. Matheson. Influence diagrams. In Howard and Matheson, editors, The Principles and Applications of Decision Analysis. Addison-Wesley, Menlo Park, Calif., 1984.

    Google Scholar 

  39. L. Holmblad and J. Ostergaard. Control of a cement kiln by fuzzy logic. In M. Gupta and E. Sanchez, editors, Fuzzy Information and Decision Processes. North Holland, 1982.

    Google Scholar 

  40. B. Kosko. Fuzzy cognitive maps. Int. J. Man-Mach. Stud., 24(1):65–75, January 1986.

    Article  MATH  Google Scholar 

  41. B. Kuipers. Commonsense reasoning about causality: Deriving behavior from structure. Artif. Intell., 24(l–3):169–205, December 1984.

    Article  Google Scholar 

  42. W. Kickert and H. van Nauta Lemke. The application of fuzzy set theory to control a warm water process. Automatica, 12(4):301–308, 1976.

    Article  Google Scholar 

  43. G. Lakoff. Hedges: A study in meaning criteria and the logic of fuzzy concepts. In Proceedings of 8th Reg. Meeting of the Chicago Linguistics Society, Chicago, Ill., Apr. 1972. Univ. of Chicago Linguistics Dept.

    Google Scholar 

  44. P. Larsen. Industrial application of fuzzy logic control. Int. J. Man-Mach. Stud., 12:3–10, 1980.

    Article  Google Scholar 

  45. L. Larkin. A fuzzy logic controller for aircraft flight control. In M. Sugeno, editor, Industrial Applications of Fuzzy Control, pages 87–104. Elsevier Science, 1985.

    Google Scholar 

  46. R. LeFaivre. Fuzzy: A programming language for fuzzy problem solving. Tech rep. 202, Univ. of Wisconson, Madison, 1974.

    Google Scholar 

  47. J. Lowrance and T. Garvey. Evidential reasoning: An implementation for multisensor integration. Tech Note 307, SRI International, Menlo Park, Ca., Dec. 1983.

    Google Scholar 

  48. G. Liu. Causal and plausible reasoning in expert systems. In Proceedings of AAAI86, pages 222–225. American Association for Artificial Intelligence, 1986.

    Google Scholar 

  49. Kathryn Laskey and Paul Lehner. Belief maintenance: An integrated approach to uncertainty management. In Proceedings of AAAI88, pages 210–214. American Association for Artificial Intelligence, August 1988.

    Google Scholar 

  50. E. Mamdani and S. Assilian. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. of Man Mach. Stud., 7:1–13, 1975.

    Article  MATH  Google Scholar 

  51. E. Mamdani. Advances in the linguistic synthesis of fuzzy controllers. Int. Journal of Man Mach. Stud., 8:669–678, 1976.

    Article  MATH  Google Scholar 

  52. D. McAllester. An outlook on truth maintenance. AI Memo 551, Artificial Intelligence Laboratory, Massachusetts Institue of Technology, Aug. 1980.

    Google Scholar 

  53. D. McAllester. Reasoning utility package user–s manual. Memo AI Memo 667, Artificial Intelligence Laboratory, Massachusetts Institue of Technology, Apr. 1982.

    Google Scholar 

  54. A. Miller et al. Development of automated aids for decision analysis. Tech rep., SRI International, Menlo Park, Ca., 1976.

    Google Scholar 

  55. R. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

    MATH  Google Scholar 

  56. Joao P. Martins and Stuart C. Shapiro. Reasoning in multiple belief spaces. In Proceedings of IJCAI83, pages 370–373. International Joint Conference on Artificial Intelligence, 1983.

    Google Scholar 

  57. J. Maiers and Y. Sherif. Applications of fuzzy set theory. IEEE Trans. Sys., Man, Cybern., SMC-15(1):175–189, January/February 1985.

    MathSciNet  Google Scholar 

  58. Michael L. Mavrovouniotis and George. Stephanopoulos. Reasoning with orders of magnitude and approximate relations. In Proceedings of AAAI87, pages 626–630. American Association for Artificial Intelligence, 1987.

    Google Scholar 

  59. Y. Murayama et al. Optimizing control of a diesel engine. In M. Sugeno, editor, Industrial Applications of Fuzzy Control, pages 63–72. Elsevier Science, 1985.

    Google Scholar 

  60. Y. Pan. Qualitative Reasonings with Deep-level Mechanism Models for Diagnoses of Dependent Failures. PhD thesis, Univ. of Illinois at Urbana Champaign, Dec. 1983.

    Google Scholar 

  61. W. Pedrycz. Design of fuzzy control algorithms with the aid of fuzzy models. In M. Sugeno, editor, Industrial Applications of Fuzzy Control, pages 87–104. Elsevier Science, 1985.

    Google Scholar 

  62. R. Rajagopalan. Qualitative modelling in the turbojet engine domain. In Proceedings AAAI84, pages 283–287. American Association for Artificial Intelligence, Aug. 1984.

    Google Scholar 

  63. C. Rieger. The declarative representation and procedural simulation of causality in physical mechanisms. In Proceedings of the 5th IJCAI, pages 250–255. International Joint Conference on Artificial Intelligence, Aug. 1977.

    Google Scholar 

  64. E. Sacks. Qualitative mathematical reasoning. In Proceedings of IJCAI-85, pages 137–139. International Joint Conference on Artificial Intelligence, Aug. 1985.

    Google Scholar 

  65. G. Shafer. A Mathematical Theory of Evidence. Princeton Unversity Press, Princeton, N.J., 1976.

    MATH  Google Scholar 

  66. R. G. Simmons. Representing and reasoning about change in geologic interpretation. Master’s thesis, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, May 1983.

    Google Scholar 

  67. R. Stallman and G. Sussman. Forward reasoning and dependency-directed backtracking in a system for computer aided circuit analysis. Artif. Intell., 9:135–196, 1977.

    Article  MATH  Google Scholar 

  68. G. Steele. … Constraints … PhD thesis, Massachusetts Institute of Technology, August 1980. full title begins: A Dissertation on Research Concerning The…

    Google Scholar 

  69. L. Steels. Descriptions as constraints in object oriented representations. In Proceedings of IJCAI-83, pages 395–397. International Joint Conference on Artificial Intelligence, Aug. 1983.

    Google Scholar 

  70. R. Tong. Analysis of fuzzy control algorithms using the relation matrix. Int. J. Man-Mach. Stud., 8:679–686, 1976.

    Article  MATH  Google Scholar 

  71. R. Tong. Fuzzy control of the activated sludge wastewater treatment process. Automatica, 16(6):695–702, 1980.

    Article  MATH  Google Scholar 

  72. R. Tong. A retrospective view of fuzzy control systems. Fuzzy Sets Sys., 14:199–210, 1984.

    Article  MATH  Google Scholar 

  73. R. Tong. An annotated bibliography of fuzzy control. In M. Sugeno, editor, Industrial Applications of Fuzzy Control, pages 249–269. Elsevier Science, 1985.

    Google Scholar 

  74. S. Weiss et al. A model-based method for computer-aided medical decision making. In W. Clancey and E. Shortliffe, editors, Readings in Medical Artificial Intelligence, chapter 7, pages 160–189. Addison-Wesley, Menlo Park, Calif., 1984.

    Google Scholar 

  75. F. Wenstop. Application of linguistic variables in the analysis of organizations. PhD thesis, University of California, Berkeley, 1975.

    Google Scholar 

  76. F. Wenstop. Quantitative analysis with linguistic variables. Fuzzy Sets Sys., 4:99–115, 1980.

    Article  MATH  Google Scholar 

  77. B. C. Williams. Minima: A symbolic approach to qualitative algebraic reasoning. In Proceedings of AAAI-88, pages 264–269. American Association for Artificial Intelligence, 1988.

    Google Scholar 

  78. T. Whalen and B. Schott. Decision support with fuzzy production systems. In P Wang, editor, Advances in Fuzzy Set Theory and Applications. Plenum Press, 1983.

    Google Scholar 

  79. T. Whalen and B. Schott. Representing and manipulating fuzzy knowledge about forecasting problems and techniques. In Proceedings of the International Conference on Systems, Man, and Cybernetics, pages 127–131. IEEE, 1983.

    Google Scholar 

  80. T. Whalen and B. Schott. Advances in linguistic processing, pages 248–253. IEEE, N.Y., 1985.

    Google Scholar 

  81. J. Yen. A model of evidential reasoning in a hierarchical hypothesis space. Tech Rep. UCB/CSD 86/277, Computer Science Division, University of California Berkeley, Dec. 1985.

    Google Scholar 

  82. S. Yasunobu and S. Miyamoto. Automatic train operation system. In M. Sugeno, editor, Industrial Applications of Fuzzy Control, pages 1–18. Elsevier Science, 1985.

    Google Scholar 

  83. L. Zadeh. Outline of a new approach to the analysis of complex systems and decsion processes. IEEE Trans, on Sys. Man Cybern., 3(1): 28–44, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  84. L. Zadeh. The concept of a linguistic variable and its application to approximate reasoning - i. Inf. Sci., 8:199–249, 1975.

    Article  MathSciNet  Google Scholar 

  85. L. Zadeh. The concept of a linguistic variable and its application to approximate reasoning - ii. Inf. Sci., 8:301–357, 1975.

    Article  MathSciNet  Google Scholar 

  86. L. Zadeh. The concept of a linguistic variable and its application to approximate reasoning - iii. Inf. Sci., 9:43–80, 1975.

    Article  MathSciNet  Google Scholar 

  87. L. Zadeh. A theory of approximate reasoning. In Hayes et al J., editor, Machine Intelligence 9, chapter 7, pages 149–193. John Wiley and Sons, Inc., 1979.

    Google Scholar 

  88. L. Zadeh. A computational approach to fuzzy quantifiers in natural languages. Tech. Memo M82/36 (revised), University of California, Berkeley/ERL, May 1982.

    Google Scholar 

  89. L. Zadeh. A simple view of the dempster-shafer theory of evidence and its implications for the rule of combination. Tech Rep. 33, University of California; Berkeley; Institute of Cognitive Studies, Nov. 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

D’Ambrosio, B. (1989). Evaluation and Conclusion. In: Qualitative Process Theory Using Linguistic Variables. Symbolic Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9671-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9671-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9673-4

  • Online ISBN: 978-1-4613-9671-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics